Background: The PTCH1 gene, also known as Patched 1, is located on the long arm of human chromosome 9 (9q22.3). It encodes the PTCH1 protein, which is a critical transmembrane receptor within the Hedgehog signaling pa...Background: The PTCH1 gene, also known as Patched 1, is located on the long arm of human chromosome 9 (9q22.3). It encodes the PTCH1 protein, which is a critical transmembrane receptor within the Hedgehog signaling pathway (Hh), playing a pivotal role in cellular communication and developmental processes. Recent studies have highlighted the significance of mutations in PTCH1 in the pathogenesis of lung cancer, positioning it as a crucial molecule for investigation in oncology. Purpose: This review aims to elucidate the role of the PTCH1 and the Hedgehog pathway in the initiation, progression, and potential treatment of lung cancer, thereby providing a theoretical foundation for personalized and precise therapeutic strategies. Method: To ensure a comprehensive review, this study systematically searched for literature related to the PTCH1, lung cancer, and the Hedgehog pathway across multiple databases including PubMed, Web of Science, and CNKI (China National Knowledge Infrastructure). The search strategy involved using specific keywords and advanced filtering options to include the most relevant and recent studies. Initial screening excluded irrelevant articles, followed by a detailed evaluation of the selected studies based on their scientific quality and relevance. Results: This review indicated that specific mutations in the PTCH1 gene are closely associated with the onset and progression of lung cancer. These mutations impede normal Hedgehog signaling, leading to unregulated cell proliferation and tumor growth. Targeting PTCH1, including vismodegib, have shown efficacy in clinical cases, particularly in SCCL with specific PTCH1 mutations, leading to complete remissions. Furthermore, the interaction between PTCH1 and microRNA-212 suggests potential therapeutic approaches by targeting miRNA to regulate PTCH1 expression. In addition, the investigation of traditional Chinese medicines such as Ginsenosides and Cordyceps sinensis extracts has shown their potential to modulate the Hedgehog pathway and reverse drug resistance. Conclusions: An in-depth understanding of the precise mechanisms by which PTCH1 mutations promote lung cancer could facilitate the development of targeted therapies. This study highlights the potential of PTCH1 as a biomarker for diagnosis and a target for precision medicine in lung cancer treatment, advocating for further research into its molecular pathways and therapeutic applications.展开更多
Background:The PTCH1 gene,also known as Patched 1,is located on the long arm of human chromosome 9(9q22.3).It encodes the PTCH1 protein,which is a critical transmembrane receptor within the Hedgehog signaling pathway(...Background:The PTCH1 gene,also known as Patched 1,is located on the long arm of human chromosome 9(9q22.3).It encodes the PTCH1 protein,which is a critical transmembrane receptor within the Hedgehog signaling pathway(Hh),playing a pivotal role in cellular communication and developmental processes.Recent studies have highlighted the significance of mutations in PTCH1 in the pathogenesis of lung cancer,positioning it as a crucial molecule for investigation in oncology.Purpose:This review aims to elucidate the role of the PTCH1 and the Hedgehog pathway in the initiation,progression,and potential treatment of lung cancer,thereby providing a theoretical foundation for personalized and precise therapeutic strategies.Method:To ensure a comprehensive review,this study systematically searched for literature related to the PTCH1,lung cancer,and the Hedgehog pathway across multiple databases including PubMed,Web of Science,and CNKI(China National Knowledge Infrastructure).The search strategy involved using specific keywords and advanced filtering options to include the most relevant and recent studies.Initial screening excluded irrelevant articles,followed by a detailed evaluation of the selected studies based on their scientific quality and relevance.Results:This review indicated that specific mutations in the PTCH1 gene are closely associated with the onset and progression of lung cancer.These mutations impede normal Hedgehog signaling,leading to unregulated cell proliferation and tumor growth.Targeting PTCH1,including vismodegib,have shown efficacy in clinical cases,particularly in SCCL with specific PTCH1 mutations,leading to complete remissions.Furthermore,the interaction between PTCH1 and microRNA-212 suggests potential therapeutic approaches by targeting miRNA to regulate PTCH1 expression.In addition,the investigation of traditional Chinese medicines such as Ginsenosides and Cordyceps sinensis extracts has shown their potential to modulate the Hedgehog pathway and reverse drug resistance.Conclusions:An in-depth understanding of the precise mechanisms by which PTCH1 mutations promote lung cancer could facilitate the development of targeted therapies.This study highlights the potential of PTCH1 as a biomarker for diagnosis and a target for precision medicine in lung cancer treatment,advocating for further research into its molecular pathways and therapeutic applications.展开更多
Cancer progression involves the sonic hedgehog(SHH)pathway,in which the receptor PTCH1 actives the downstream pathways.Dysfunction of PTCH1 can lead to nevoid basal cell carcinoma Syndrome(NBCCs)including neoplastic d...Cancer progression involves the sonic hedgehog(SHH)pathway,in which the receptor PTCH1 actives the downstream pathways.Dysfunction of PTCH1 can lead to nevoid basal cell carcinoma Syndrome(NBCCs)including neoplastic disease and congenital disorder.To evaluate the relationship between PTCH1 and cancer,we applied the CRISPR/Cas9 system to knock out PTCH1 in oral nontumorous epithelial cells(GMSM-K).Then we screened six PTCH1 variants associated with cleft lip/palate(CL/P),one of the congenital disorders in NBCCs,and generated PTCH1 variant and wild-type recombinant PTCH1^(−/−)GMSM-K cell lines.Transcriptome sequencing was conducted in these cell lines.The results revealed that differentially expressed genes(DEGs)in PTCH1^(−/−)GMSM-K were enriched in extracellular compartments,contributing epithelial diseases by pathway enrichment analysis.RT-PCR confirmed that KRT34,KRT81,KRT86,PDGFB,and WNT10B genes,associated with extracellular compartments were highly expressed in PTCH1^(−/−).The Kyoto Encyclopedia of Genes and Genomes analysis also suggested that DEGs are closely related to focal adhesion,transcriptional misregulation,and proteoglycans in breast and gastric cancers.Comparative analysis of samples revealed that the CL/P-associated PTCH1 variants A443G and V908G are potentially carcinogenic.These findings provide new insights into the carcinogenic potential of PTCH1 dysfunction.展开更多
目的:探讨PTCH1基因甲基化在胃癌发生中的作用及去甲基化试剂5-氮杂-2′-脱氧胞苷(5-Aza-dC)对胃癌的治疗作用。方法:选取10例胃癌组织及其癌旁正常组织和胃癌细胞株AGS,抽提组织和细胞的总RNA和基因组DNA。实时定量QRT-PCR检测PTCH1基...目的:探讨PTCH1基因甲基化在胃癌发生中的作用及去甲基化试剂5-氮杂-2′-脱氧胞苷(5-Aza-dC)对胃癌的治疗作用。方法:选取10例胃癌组织及其癌旁正常组织和胃癌细胞株AGS,抽提组织和细胞的总RNA和基因组DNA。实时定量QRT-PCR检测PTCH1基因的mRNA表达,MSP(methylation specific PCR)分析PTCH1基因启动子区甲基化变化。用5-Aza-dC处理AGS细胞株,流式细胞术检测细胞周期和凋亡并观察PTCH1基因甲基化水平的改变。结果:胃癌组织、癌旁正常组织和胃癌细胞株AGS中PTCH1基因表达和启动子甲基化水平呈负相关,相关系数为-0.591(P=0.006);5-Aza-dC的处理可引起胃癌细胞AGS细胞发生凋亡和G0/G1期阻滞,PTCH1基因发生去甲基化变化并表达增加。结论:PTCH1基因启动子区高甲基化是胃癌细胞PTCH1低表达主要原因之一,5-Aza-dC能逆转PTCH1基因甲基化状态,调控其表达,对胃癌具有一定的治疗作用。展开更多
文摘Background: The PTCH1 gene, also known as Patched 1, is located on the long arm of human chromosome 9 (9q22.3). It encodes the PTCH1 protein, which is a critical transmembrane receptor within the Hedgehog signaling pathway (Hh), playing a pivotal role in cellular communication and developmental processes. Recent studies have highlighted the significance of mutations in PTCH1 in the pathogenesis of lung cancer, positioning it as a crucial molecule for investigation in oncology. Purpose: This review aims to elucidate the role of the PTCH1 and the Hedgehog pathway in the initiation, progression, and potential treatment of lung cancer, thereby providing a theoretical foundation for personalized and precise therapeutic strategies. Method: To ensure a comprehensive review, this study systematically searched for literature related to the PTCH1, lung cancer, and the Hedgehog pathway across multiple databases including PubMed, Web of Science, and CNKI (China National Knowledge Infrastructure). The search strategy involved using specific keywords and advanced filtering options to include the most relevant and recent studies. Initial screening excluded irrelevant articles, followed by a detailed evaluation of the selected studies based on their scientific quality and relevance. Results: This review indicated that specific mutations in the PTCH1 gene are closely associated with the onset and progression of lung cancer. These mutations impede normal Hedgehog signaling, leading to unregulated cell proliferation and tumor growth. Targeting PTCH1, including vismodegib, have shown efficacy in clinical cases, particularly in SCCL with specific PTCH1 mutations, leading to complete remissions. Furthermore, the interaction between PTCH1 and microRNA-212 suggests potential therapeutic approaches by targeting miRNA to regulate PTCH1 expression. In addition, the investigation of traditional Chinese medicines such as Ginsenosides and Cordyceps sinensis extracts has shown their potential to modulate the Hedgehog pathway and reverse drug resistance. Conclusions: An in-depth understanding of the precise mechanisms by which PTCH1 mutations promote lung cancer could facilitate the development of targeted therapies. This study highlights the potential of PTCH1 as a biomarker for diagnosis and a target for precision medicine in lung cancer treatment, advocating for further research into its molecular pathways and therapeutic applications.
文摘Background:The PTCH1 gene,also known as Patched 1,is located on the long arm of human chromosome 9(9q22.3).It encodes the PTCH1 protein,which is a critical transmembrane receptor within the Hedgehog signaling pathway(Hh),playing a pivotal role in cellular communication and developmental processes.Recent studies have highlighted the significance of mutations in PTCH1 in the pathogenesis of lung cancer,positioning it as a crucial molecule for investigation in oncology.Purpose:This review aims to elucidate the role of the PTCH1 and the Hedgehog pathway in the initiation,progression,and potential treatment of lung cancer,thereby providing a theoretical foundation for personalized and precise therapeutic strategies.Method:To ensure a comprehensive review,this study systematically searched for literature related to the PTCH1,lung cancer,and the Hedgehog pathway across multiple databases including PubMed,Web of Science,and CNKI(China National Knowledge Infrastructure).The search strategy involved using specific keywords and advanced filtering options to include the most relevant and recent studies.Initial screening excluded irrelevant articles,followed by a detailed evaluation of the selected studies based on their scientific quality and relevance.Results:This review indicated that specific mutations in the PTCH1 gene are closely associated with the onset and progression of lung cancer.These mutations impede normal Hedgehog signaling,leading to unregulated cell proliferation and tumor growth.Targeting PTCH1,including vismodegib,have shown efficacy in clinical cases,particularly in SCCL with specific PTCH1 mutations,leading to complete remissions.Furthermore,the interaction between PTCH1 and microRNA-212 suggests potential therapeutic approaches by targeting miRNA to regulate PTCH1 expression.In addition,the investigation of traditional Chinese medicines such as Ginsenosides and Cordyceps sinensis extracts has shown their potential to modulate the Hedgehog pathway and reverse drug resistance.Conclusions:An in-depth understanding of the precise mechanisms by which PTCH1 mutations promote lung cancer could facilitate the development of targeted therapies.This study highlights the potential of PTCH1 as a biomarker for diagnosis and a target for precision medicine in lung cancer treatment,advocating for further research into its molecular pathways and therapeutic applications.
基金This work was supported by the Natural Science Foundation of China(Nos.81870747,82170916)Clinical Medicine Plus X–Young Scholars Project(PKU2021LCXQ003)the Fundamental Research Funds for the Central Universities(BMU2021YJ001).
文摘Cancer progression involves the sonic hedgehog(SHH)pathway,in which the receptor PTCH1 actives the downstream pathways.Dysfunction of PTCH1 can lead to nevoid basal cell carcinoma Syndrome(NBCCs)including neoplastic disease and congenital disorder.To evaluate the relationship between PTCH1 and cancer,we applied the CRISPR/Cas9 system to knock out PTCH1 in oral nontumorous epithelial cells(GMSM-K).Then we screened six PTCH1 variants associated with cleft lip/palate(CL/P),one of the congenital disorders in NBCCs,and generated PTCH1 variant and wild-type recombinant PTCH1^(−/−)GMSM-K cell lines.Transcriptome sequencing was conducted in these cell lines.The results revealed that differentially expressed genes(DEGs)in PTCH1^(−/−)GMSM-K were enriched in extracellular compartments,contributing epithelial diseases by pathway enrichment analysis.RT-PCR confirmed that KRT34,KRT81,KRT86,PDGFB,and WNT10B genes,associated with extracellular compartments were highly expressed in PTCH1^(−/−).The Kyoto Encyclopedia of Genes and Genomes analysis also suggested that DEGs are closely related to focal adhesion,transcriptional misregulation,and proteoglycans in breast and gastric cancers.Comparative analysis of samples revealed that the CL/P-associated PTCH1 variants A443G and V908G are potentially carcinogenic.These findings provide new insights into the carcinogenic potential of PTCH1 dysfunction.
文摘目的探讨PTCH1基因rs28 377 268位点多态性与骨质疏松性椎体压缩骨折患者骨代谢标志物的关系。方法选取2016年1月至2016年6月我科脊柱组收治的骨质疏松性椎体压缩骨折患者(骨折组)和脊柱退行性病变骨质疏松患者(对照组)各80例。采用SNa Pshot法进行SNP分型,化学发光法测定骨代谢标志物:骨钙素(osteocalcin,OC)、Ⅰ型胶原羧基端肽β特殊序列(beta-crosslaps of type I collagen cross-linked C-telopeptide,β-CTX)、Ⅰ型前胶原氨基端前肽(procollagen I N-terminal propeptide,P1NP)、25-羟维生素D(25-hydroxyvitamin D,25(OH)D)、甲状旁腺激素(parathyroid hormone,PTH)浓度。比较两组等位基因频率、基因型频率分布及两组骨代谢标志物浓度差异,并分析PTCH1基因rs28 377 268位点多态性与骨代谢标志物浓度的关系。结果骨折组和对照组G、T等位基因频率均为80%、20%,两组GG、GT、TT基因型频率分别为66.25%、27.50%、6.25%和62.50%、35.00%、2.50%,无统计学意义(P>0.05)。骨折组中血清OC、PINP、β-CTX及25(OH)D浓度较对照组均无统计学意义,而PTH浓度明显高于对照组(P<0.05)。血清OC、PINP、β-CTX及25(OH)D浓度在GG、GT、TT3种基因型之间亦无统计学意义(P>0.05),血清PTH浓度在GT、TT基因型中均高于GG基因型,其中TT基因型显著高于GG、GT基因型(P<0.05)。结论 PTCH1基因rs28 377 268位点在骨质疏松患者中G、T等位基因的表达频率分别为80%、20%,rs28377268-T等位基因高表达可能间接升高血清PTH浓度,促进骨质疏松发生,增加椎体脆性骨折风险。
文摘目的:检测Hedgehog信号通路基因Sonic Hedgehog(Shh)、Patched1(Ptch1)、Smoothened(Smo)及神经胶质瘤相关癌基因同源蛋白1(glioma-associated oncogene homolog 1,Gli1)在胰腺癌组织中的表达及其生物学意义.方法:采用反转录-聚合酶链反应(RT-PCR)分别检测48例胰腺癌组织和配对的癌旁组织中Shh、Ptch1、Smo及Gli1 mRNA的表达情况.结果:RT-PCR检测结果显示:Shh、Ptch1、Smo及Gli1 mRNA在胰腺癌组织中的相对表达量分别是0.652±0.036、0.604±0.063、0.493±0.011、0.512±0.052,在胰腺癌旁组织中为0.312±0.013、0.319±0.053、0.214±0.046、0.247±0.059(P<0.05).与正常胰腺组织相比,胰腺癌组织中Shh、Ptch1、Smo及Gli1 mRNA表达量显著升高(P<0.05),胰腺癌组织中Shh、Ptch1、Smo及G l i1mRNA表达与胰腺癌的分化程度有显著性差异(P<0.05),与患者年龄、性别、肿瘤直径、TNM分期、淋巴结转移、糖链抗原(CA19-9)无显著性差异(P>0.05).结论:Hedgehog信号通路基因Shh、Ptch1、S m o及G l i1在胰腺癌组织中表达增高,Hedgehog信号通路的异常激活可能与胰腺癌发生发展过程相关.
文摘目的:探讨PTCH1基因甲基化在胃癌发生中的作用及去甲基化试剂5-氮杂-2′-脱氧胞苷(5-Aza-dC)对胃癌的治疗作用。方法:选取10例胃癌组织及其癌旁正常组织和胃癌细胞株AGS,抽提组织和细胞的总RNA和基因组DNA。实时定量QRT-PCR检测PTCH1基因的mRNA表达,MSP(methylation specific PCR)分析PTCH1基因启动子区甲基化变化。用5-Aza-dC处理AGS细胞株,流式细胞术检测细胞周期和凋亡并观察PTCH1基因甲基化水平的改变。结果:胃癌组织、癌旁正常组织和胃癌细胞株AGS中PTCH1基因表达和启动子甲基化水平呈负相关,相关系数为-0.591(P=0.006);5-Aza-dC的处理可引起胃癌细胞AGS细胞发生凋亡和G0/G1期阻滞,PTCH1基因发生去甲基化变化并表达增加。结论:PTCH1基因启动子区高甲基化是胃癌细胞PTCH1低表达主要原因之一,5-Aza-dC能逆转PTCH1基因甲基化状态,调控其表达,对胃癌具有一定的治疗作用。