[Objective] The study had developed a means of rapid propagation Pteris vittata L.by tissue culture. The species was a perennial fern belonging to the genus Pteris. [Metbed] The leaf bud of P. vittata collected in fie...[Objective] The study had developed a means of rapid propagation Pteris vittata L.by tissue culture. The species was a perennial fern belonging to the genus Pteris. [Metbed] The leaf bud of P. vittata collected in field conditions as explantsand the 1/2 MS + 3% sucrose + 0.7% agar as the basic medium were used to screen the medium formula of the phytohormone ratio for callus induction and subculture of P. vittata. [Result] The best medium formula for each step was list below: 1/2 MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 0.1 mg/L KT + 0.5 mg/L 2, 4-D for in- ducing the callus from explants; 1/2MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 1.0 mg/L KT + 0.01 mg/L 2,4-D for inducing the GGB from callus and the seedlings from GGB. In addition, 1/2 MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 0.5 mg/L 2,4-D for the subculture could make the continued proliferation of callus. [Cen- clusioa] This study makes an applicable procedure by the direct use of field materi- als, for propagating P. vittata in a simplified and rapid mode.展开更多
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsen...Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (〈20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.展开更多
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were...In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.展开更多
Environmental scanning electron microscope(ESEM)fitted with an energy disper-sive X-ray microanalyzer(EDX)was used to investigate the surface micromorphology and arse-nic(As)micro-distribution in Chinese brake(Pteris ...Environmental scanning electron microscope(ESEM)fitted with an energy disper-sive X-ray microanalyzer(EDX)was used to investigate the surface micromorphology and arse-nic(As)micro-distribution in Chinese brake(Pteris vittata L.).It was found that amounts of trichome,which possessed multicellular structure with the average length of 160μm and with an average diameter of 28μm,existed in the frond of P.vittata,and the density of trichome on the pinnate axial surface was higher than that on the petiole.Visible X-ray peak of As was recorded in the epidermal cell and trichome.The relative weight of As in the pinnate trichome,which con-tained the highest concentration of As among all tissues of the plant,was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous cells,respectively.The As concentrations in the basal and stalk cells of the same trichome were higher than that in its cap cell.This is the first time to report that the trichome of P.vittata plays an important role in arsenic hyperaccumulation.The finding from the present study implies that much attention should be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and improving the ability of As accumulation.展开更多
Pot experiment was conducted to understand the effect of phosphorus on arsenic accumulation in As-hyperaccumulator Chinese brake (Pteris vittata L.). It is shown that arsenic concentrations in the fronds and rhizoids,...Pot experiment was conducted to understand the effect of phosphorus on arsenic accumulation in As-hyperaccumulator Chinese brake (Pteris vittata L.). It is shown that arsenic concentrations in the fronds and rhizoids, the arsenic bioaccumulation factor, and the total arsenic in the fronds were not influenced significantly under low levels of phosphorus (≤400 mg/kg) and increased sharply under high levels of phosphorus (】400 mg/ kg). The discovery implies that the efficiency of arsenic removal in phytoremedia-tion using the hyperaccumulating plant can be greatly elevated by the phosphorus addition at high rates. The interaction between the accumulation of phosphorus and that of arsenic in plant was stimulated mutually. The result represents that Chinese brake is a good material for plant physiologist to conduct comparative and mechanism studies on the uptake behaviors of phosphorus and arsenic, and phosphorus is also a potential accelerator for phytoremediation of arsenic-contaminated soils.展开更多
The distributions of arsenic and 6 essential elements in the pinna of As hyperaccumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the di...The distributions of arsenic and 6 essential elements in the pinna of As hyperaccumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the distribution and mobility of the elements revealed that SRXRF study on the elemental distribution was feasible to inspect the transportations of elements in plants. The distribution of As in the pinna showed that As had great abilities to be transported in xylem vessels and from xylem to mesophyll. The distribution of K, one of the most mobile elements in plants, was similar to that of As, whereas the distributions of Fe and Ca with less mobility in plants were almost opposite to that of As in the pinna.展开更多
The subcellular distribution of arsenic (As) in Pteris vittata L., an As-hyperaccumulator, was studied to de- termine As compartmentalization and to explore the mecha- nisms that confer As tolerance. When the plant wa...The subcellular distribution of arsenic (As) in Pteris vittata L., an As-hyperaccumulator, was studied to de- termine As compartmentalization and to explore the mecha- nisms that confer As tolerance. When the plant was grown in a nutrient solution without additional As, most of the accu- mulated As was isolated to the cell wall. However, in plants growing in a nutrient solution containing 0.1 or 0.2 mmol/L As, approximately 78% of the total As accumulated within the pinna. The proportions of As accumulation in the cyto- plasmic supernatant fraction were 78% of that in the pinna and 61% of that in the plant. In either treatment group (0.1 or 0.2 mmol/L As), the fraction containing the lowest level of As was the organelle fraction. These results suggest that As accumulates in the pinna where it is primarily distributed in the cytoplasmic supernatant fraction. The role of As com- partmentalization may be intricately linked with As detoxi- fication in P. vittata L.展开更多
Aims the functional advantages of arsenic(As)hyperaccumulation by plants are poorly understood.One proposed benefit,termed ele-mental allelopathy,occurs when hyperaccumulated As is cycled from the plant back into the ...Aims the functional advantages of arsenic(As)hyperaccumulation by plants are poorly understood.One proposed benefit,termed ele-mental allelopathy,occurs when hyperaccumulated As is cycled from the plant back into the top layer of soil,allowing As hyperaccu-mulators to gain an advantage over intolerant species by increasing soil As concentrations([As])underneath their canopy.to date,there are no studies that detail the presence of increased soil[As]associ-ated with As hyperaccumulators.In this study,we documented vari-ation in the soil[As]associated with the Chinese brake fern,Pteris vittata L.and also compared the effects of environmentally relevant soil and solution[As]on competitor plant growth.Methods Four populations of P.vittata were identified in central Florida,USA.P.vittata tissue samples and soil samples were collected at the base of and at 3 m away from ferns in each population(n=36).Five sample locations were randomly selected from each site,and soils from the base and 3 m away from each fern were collected to examine the effects of naturally occurring soil[As]on the germination and growth of a potential competitor plant(Oxalis stricta).Solutions with increasing[As]were also used to examine the threshold for negative effects of[As]on O.stricta growth.[As]were measured using inductively coupled plasma mass spectrometry(ICP-MS).Important Findings Overall,soil[As]from the base of ferns was nearly twice that of soil 3 m away indicating that ferns hyperaccumulate As.However,ferns and their associated soil,contained different[As]depending on their col-lection site,indicating that these populations accumulate and use[As]differently.O.stricta growth decreased and germination was delayed as solution and soil[As]increased.However,the relative distance from the fern that the soil was collected from did not affect growth,which would be expected with elemental allelopathy.Our results show that P.vittata is associated with higher soil[As]and these concentrations are sufficient to inhibit growth of competitors.However,the absence of a strong inhibitory relationship associated with proximity to the fern across all locations suggests that the possible functional advantages of elemental allelopathy may depend on site specific characteristics.展开更多
Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c...Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.展开更多
基金Supported by National Natural Science Foundation of China(30900158)Research Foundation for Guangdong Pharmaceutical University(43553006)~~
文摘[Objective] The study had developed a means of rapid propagation Pteris vittata L.by tissue culture. The species was a perennial fern belonging to the genus Pteris. [Metbed] The leaf bud of P. vittata collected in field conditions as explantsand the 1/2 MS + 3% sucrose + 0.7% agar as the basic medium were used to screen the medium formula of the phytohormone ratio for callus induction and subculture of P. vittata. [Result] The best medium formula for each step was list below: 1/2 MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 0.1 mg/L KT + 0.5 mg/L 2, 4-D for in- ducing the callus from explants; 1/2MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 1.0 mg/L KT + 0.01 mg/L 2,4-D for inducing the GGB from callus and the seedlings from GGB. In addition, 1/2 MS + 3% sucrose + 0.7% agar + 0.5 g/L PVP + 0.5 mg/L 2,4-D for the subculture could make the continued proliferation of callus. [Cen- clusioa] This study makes an applicable procedure by the direct use of field materi- als, for propagating P. vittata in a simplified and rapid mode.
基金This work was supported by the National Science Foundation for the Distinguished Young Scholar of China(No.40325003).
文摘Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (〈20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.
基金Project supported by the National Foundation for Distinguished Youthof China(No.40325003)the National Natural Science Foun-dation of China(No.40232022).
文摘In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.
基金This work was supported by the National Science Fund for Distinguished Young Scholar(Grant No.40325003)the China State Program for Basic Research(No.2002CCA03800)+1 种基金the National Natural Science Foundation of China(Grant No.40232022)the National High-Tech R&D Program(No.2001AA6450).
文摘Environmental scanning electron microscope(ESEM)fitted with an energy disper-sive X-ray microanalyzer(EDX)was used to investigate the surface micromorphology and arse-nic(As)micro-distribution in Chinese brake(Pteris vittata L.).It was found that amounts of trichome,which possessed multicellular structure with the average length of 160μm and with an average diameter of 28μm,existed in the frond of P.vittata,and the density of trichome on the pinnate axial surface was higher than that on the petiole.Visible X-ray peak of As was recorded in the epidermal cell and trichome.The relative weight of As in the pinnate trichome,which con-tained the highest concentration of As among all tissues of the plant,was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous cells,respectively.The As concentrations in the basal and stalk cells of the same trichome were higher than that in its cap cell.This is the first time to report that the trichome of P.vittata plays an important role in arsenic hyperaccumulation.The finding from the present study implies that much attention should be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and improving the ability of As accumulation.
基金The work was jointly supported by the National High-tech R & D Program (Grant No. 2001AA640501)Chinese Academy of Sciences Innovation Program (Grant No. KZCX-401-01)the National Natural Science Foundation of China (Grant No. 40071075) and the Nat
文摘Pot experiment was conducted to understand the effect of phosphorus on arsenic accumulation in As-hyperaccumulator Chinese brake (Pteris vittata L.). It is shown that arsenic concentrations in the fronds and rhizoids, the arsenic bioaccumulation factor, and the total arsenic in the fronds were not influenced significantly under low levels of phosphorus (≤400 mg/kg) and increased sharply under high levels of phosphorus (】400 mg/ kg). The discovery implies that the efficiency of arsenic removal in phytoremedia-tion using the hyperaccumulating plant can be greatly elevated by the phosphorus addition at high rates. The interaction between the accumulation of phosphorus and that of arsenic in plant was stimulated mutually. The result represents that Chinese brake is a good material for plant physiologist to conduct comparative and mechanism studies on the uptake behaviors of phosphorus and arsenic, and phosphorus is also a potential accelerator for phytoremediation of arsenic-contaminated soils.
文摘The distributions of arsenic and 6 essential elements in the pinna of As hyperaccumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the distribution and mobility of the elements revealed that SRXRF study on the elemental distribution was feasible to inspect the transportations of elements in plants. The distribution of As in the pinna showed that As had great abilities to be transported in xylem vessels and from xylem to mesophyll. The distribution of K, one of the most mobile elements in plants, was similar to that of As, whereas the distributions of Fe and Ca with less mobility in plants were almost opposite to that of As in the pinna.
基金supported by the National Science Foundation for Distinguished Young Scholar(Grant No.40325003)the.National Natural Science Foundation of China(Grant No.40232022)the National High-Tech R&D Program(No.2003AA645010).
文摘The subcellular distribution of arsenic (As) in Pteris vittata L., an As-hyperaccumulator, was studied to de- termine As compartmentalization and to explore the mecha- nisms that confer As tolerance. When the plant was grown in a nutrient solution without additional As, most of the accu- mulated As was isolated to the cell wall. However, in plants growing in a nutrient solution containing 0.1 or 0.2 mmol/L As, approximately 78% of the total As accumulated within the pinna. The proportions of As accumulation in the cyto- plasmic supernatant fraction were 78% of that in the pinna and 61% of that in the plant. In either treatment group (0.1 or 0.2 mmol/L As), the fraction containing the lowest level of As was the organelle fraction. These results suggest that As accumulates in the pinna where it is primarily distributed in the cytoplasmic supernatant fraction. The role of As com- partmentalization may be intricately linked with As detoxi- fication in P. vittata L.
文摘Aims the functional advantages of arsenic(As)hyperaccumulation by plants are poorly understood.One proposed benefit,termed ele-mental allelopathy,occurs when hyperaccumulated As is cycled from the plant back into the top layer of soil,allowing As hyperaccu-mulators to gain an advantage over intolerant species by increasing soil As concentrations([As])underneath their canopy.to date,there are no studies that detail the presence of increased soil[As]associ-ated with As hyperaccumulators.In this study,we documented vari-ation in the soil[As]associated with the Chinese brake fern,Pteris vittata L.and also compared the effects of environmentally relevant soil and solution[As]on competitor plant growth.Methods Four populations of P.vittata were identified in central Florida,USA.P.vittata tissue samples and soil samples were collected at the base of and at 3 m away from ferns in each population(n=36).Five sample locations were randomly selected from each site,and soils from the base and 3 m away from each fern were collected to examine the effects of naturally occurring soil[As]on the germination and growth of a potential competitor plant(Oxalis stricta).Solutions with increasing[As]were also used to examine the threshold for negative effects of[As]on O.stricta growth.[As]were measured using inductively coupled plasma mass spectrometry(ICP-MS).Important Findings Overall,soil[As]from the base of ferns was nearly twice that of soil 3 m away indicating that ferns hyperaccumulate As.However,ferns and their associated soil,contained different[As]depending on their col-lection site,indicating that these populations accumulate and use[As]differently.O.stricta growth decreased and germination was delayed as solution and soil[As]increased.However,the relative distance from the fern that the soil was collected from did not affect growth,which would be expected with elemental allelopathy.Our results show that P.vittata is associated with higher soil[As]and these concentrations are sufficient to inhibit growth of competitors.However,the absence of a strong inhibitory relationship associated with proximity to the fern across all locations suggests that the possible functional advantages of elemental allelopathy may depend on site specific characteristics.
基金the National Natural Science Foundation of China (No. 39870900) and the key project grant from Guangdong Province Science and Te
文摘Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.