AIM:To develop a fuzzy classification method to score the texture features of pancreatic cancer in endoscopic ultrasonography(EUS)images and evaluate its utility in making prognosis judgments for patients with unresec...AIM:To develop a fuzzy classification method to score the texture features of pancreatic cancer in endoscopic ultrasonography(EUS)images and evaluate its utility in making prognosis judgments for patients with unresectable pancreatic cancer treated by EUS-guided interstitial brachytherapy.METHODS:EUS images from our retrospective database were analyzed.The regions of interest were drawn,and texture features were extracted,selected,and scored with a fuzzy classification method using a C++program.Then,patients with unresectable pancreatic cancer were enrolled to receive EUS-guided iodine 125 radioactive seed implantation.Their fuzzy classification scores,tumor volumes,and carbohydrate antigen 199(CA199)levels before and after the brachytherapy were recorded.The association between the changes in these parameters and overall survival was analyzed statistically.RESULTS:EUS images of 153 patients with pancreatic cancer and 63 non-cancer patients were analyzed.A total of 25 consecutive patients were enrolled,and they tolerated the brachytherapy well without any complications.There was a correlation between the change in the fuzzy classification score and overall survival(Spearman test,r=0.616,P=0.001),whereas no correlation was found to be significant between the change in tumor volume(P=0.663),CA199 level(P=0.659),and overall survival.There were 15 patients with a decrease in their fuzzy classification score after brachytherapy,whereas the fuzzy classification score increased in another 10 patients.There was a significant difference in overall survival between the two groups(67 d vs 151 d,P=0.001),but not in the change of tumor volume and CA199 level.CONCLUSION:Using the fuzzy classification method to analyze EUS images of pancreatic cancer is feasible,and the method can be used to make prognosis judgments for patients with unresectable pancreatic cancer treated by interstitial brachytherapy.展开更多
Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent ...Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.展开更多
Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s li...Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s lives.Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques.This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data set.The novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated dataset.The analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results.展开更多
Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and de...Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.展开更多
Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce ...Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.展开更多
This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on...This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on two steps.The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator.A problem arises from the question of how to extract features which characterize cervical precancerous cells.For the first step,a preprocessing technique called intensity transformation and morphological operation(ITMO)algorithm used to enhance the quality of images was proposed.The algo-rithm consisted of contrast stretching and morphological opening operations.The second step was to characterize the cervical cells to three classes,namely normal,low grade intra-epithelial squamous lesion(LSIL),and high grade intra-epithelial squamous lesion(HSIL).To differen-tiate between normal and precancerous cells of the cervical cell FE-SEM images,human papillomavirus(HPV)contained in the surface of cells were used as indicators.In this paper,we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture.Gray level co-occurrences matrix(GLCM)technique was used to extract the texture features.To confirm the system's perfor-mance,the system was tested using 150 cervical cell FE-SEM images.The results showed that the accuracy,sensitivity and specificity of the proposed system are 95.7%,95.7%and 95.8%,respectively.展开更多
The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and...The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans.展开更多
Lung cancer is the leading cause of mortality in the world affectingboth men and women equally.When a radiologist just focuses on the patient’sbody, it increases the amount of strain on the radiologist and the likeli...Lung cancer is the leading cause of mortality in the world affectingboth men and women equally.When a radiologist just focuses on the patient’sbody, it increases the amount of strain on the radiologist and the likelihoodof missing pathological information such as abnormalities are increased.One of the primary objectives of this research work is to develop computerassisteddiagnosis and detection of lung cancer. It also intends to make iteasier for radiologists to identify and diagnose lung cancer accurately. Theproposed strategy which was based on a unique image feature, took intoconsideration the spatial interaction of voxels that were next to one another.Using the U-NET+Three parameter logistic distribution-based technique, wewere able to replicate the situation. The proposed technique had an averageDice co-efficient (DSC) of 97.3%, a sensitivity of 96.5% and a specificity of94.1% when tested on the Luna-16 dataset. This research investigates howdiverse lung segmentation, juxta pleural nodule inclusion, and pulmonarynodule segmentation approaches may be applied to create Computer AidedDiagnosis (CAD) systems. When we compared our approach to four otherlung segmentation methods, we discovered that ours was the most successful.We employed 40 patients from Luna-16 datasets to evaluate this. In termsof DSC performance, the findings demonstrate that the suggested techniqueoutperforms the other strategies by a significant margin.展开更多
The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs b...The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.展开更多
Nowadays, computer vision as an interdisciplinary field is growing in different areas such as medical, electronics, etc. In the field, detection and particularly image segmentation is an essential task in which is dif...Nowadays, computer vision as an interdisciplinary field is growing in different areas such as medical, electronics, etc. In the field, detection and particularly image segmentation is an essential task in which is difficult to find the appropriate one based on the application. In this paper, a new algorithm is proposed to segment the lesion from background. The algorithm is based on log edge detector with iterative median filtering. We have tested our algorithm on 20 dermoscopic images and compare the lesion detection results with those manually segmented by dermatologists. The experiments represent the effectiveness of proposed algorithm.展开更多
BACKGROUND Delays in sentinel lymph node(SLN)biopsy may affect the positivity of non-SLNs.For these reasons,effort is being directed at obtaining reliable information regarding SLN positivity prior to surgical excisio...BACKGROUND Delays in sentinel lymph node(SLN)biopsy may affect the positivity of non-SLNs.For these reasons,effort is being directed at obtaining reliable information regarding SLN positivity prior to surgical excision.However,the existing tools,e.g.,dermoscopy,do not recognize statistically significant predictive criteria for SLN positivity in melanomas.AIM To investigate the possible association of computer-assisted objectively obtained color,color texture,sharpness and geometry variables with SLN positivity.METHODS We retrospectively reviewed and analyzed the computerized medical records of all patients diagnosed with cutaneous melanoma in a tertiary hospital in Germany during a 3-year period.The study included patients with histologically confirmed melanomas with Breslow>0.75 mm who underwent lesion excision and SLN biopsy during the study period and who had clinical images shot with a digital camera and a handheld ruler aligned beside the lesion.RESULTS Ninety-nine patients with an equal number of lesions met the inclusion criteria and were included in the analysis.Overall mean(±standard deviation)age was 66(15)years.The study group consisted of 20 patients with tumor-positive SLN(SLN+)biopsy,who were compared to 79 patients with tumor-negative SLN biopsy specimen(control group).The two groups differed significantly in terms of age(61 years vs 68 years)and histological subtype,with the SLN+patients being younger and presenting more often with nodular or secondary nodular tumors(P<0.05).The study group patients showed significantly higher eccentricity(i.e.distance between color and geometrical midpoint)as well as higher sharpness(i.e.these lesions were more discrete from the surrounding normal skin,P<0.05).Regarding color variables,SLN+patients demonstrated higher range in all four color intensities(gray,red,green,blue)and significantly higher skewness in three color intensities(gray,red,blue),P<0.05.Color texture variables,i.e.lacunarity,were comparable in both groups.CONCLUSION SLN+patients demonstrated significantly higher eccentricity,higher sharpness,higher range in all four color intensities(gray,red,green,blue)and significantly higher skewness in three color intensities(gray,red,blue).Further prospective studies are needed to better understand the effectiveness of clinical image processing in SLN+melanoma patients.展开更多
Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence o...Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.展开更多
基金Supported by The National Natural Science Foundation of China,No.30801362 and 81001074
文摘AIM:To develop a fuzzy classification method to score the texture features of pancreatic cancer in endoscopic ultrasonography(EUS)images and evaluate its utility in making prognosis judgments for patients with unresectable pancreatic cancer treated by EUS-guided interstitial brachytherapy.METHODS:EUS images from our retrospective database were analyzed.The regions of interest were drawn,and texture features were extracted,selected,and scored with a fuzzy classification method using a C++program.Then,patients with unresectable pancreatic cancer were enrolled to receive EUS-guided iodine 125 radioactive seed implantation.Their fuzzy classification scores,tumor volumes,and carbohydrate antigen 199(CA199)levels before and after the brachytherapy were recorded.The association between the changes in these parameters and overall survival was analyzed statistically.RESULTS:EUS images of 153 patients with pancreatic cancer and 63 non-cancer patients were analyzed.A total of 25 consecutive patients were enrolled,and they tolerated the brachytherapy well without any complications.There was a correlation between the change in the fuzzy classification score and overall survival(Spearman test,r=0.616,P=0.001),whereas no correlation was found to be significant between the change in tumor volume(P=0.663),CA199 level(P=0.659),and overall survival.There were 15 patients with a decrease in their fuzzy classification score after brachytherapy,whereas the fuzzy classification score increased in another 10 patients.There was a significant difference in overall survival between the two groups(67 d vs 151 d,P=0.001),but not in the change of tumor volume and CA199 level.CONCLUSION:Using the fuzzy classification method to analyze EUS images of pancreatic cancer is feasible,and the method can be used to make prognosis judgments for patients with unresectable pancreatic cancer treated by interstitial brachytherapy.
文摘Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.
文摘Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s lives.Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques.This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data set.The novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated dataset.The analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/25/43)Taif University Researchers Supporting Project Number(TURSP-2020/346),Taif University,Taif,Saudi Arabia.
文摘Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.
文摘Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.
基金UM Postgraduate Research Fund PG083-2013B and UM High Impact Research Grant UM-MOHE UM.C/625/1/HIR/MOHE/14 from the Ministry of Higher Education,Malaysia..
文摘This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on two steps.The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator.A problem arises from the question of how to extract features which characterize cervical precancerous cells.For the first step,a preprocessing technique called intensity transformation and morphological operation(ITMO)algorithm used to enhance the quality of images was proposed.The algo-rithm consisted of contrast stretching and morphological opening operations.The second step was to characterize the cervical cells to three classes,namely normal,low grade intra-epithelial squamous lesion(LSIL),and high grade intra-epithelial squamous lesion(HSIL).To differen-tiate between normal and precancerous cells of the cervical cell FE-SEM images,human papillomavirus(HPV)contained in the surface of cells were used as indicators.In this paper,we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture.Gray level co-occurrences matrix(GLCM)technique was used to extract the texture features.To confirm the system's perfor-mance,the system was tested using 150 cervical cell FE-SEM images.The results showed that the accuracy,sensitivity and specificity of the proposed system are 95.7%,95.7%and 95.8%,respectively.
文摘The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans.
基金supported by the Ministry of SMEs and Startups (MSS),Korea,under the“Startup growth technology development program (R&D,S3125114)”by the Ministry of Small and Medium-sized Enterprises (SMEs)and Startups (MSS),Korea,under the“Regional Specialized Industry Development Plus Program (R&D,S3246057)”supervised by the Korea Institute for Advancement of Technology (KIAT).
文摘Lung cancer is the leading cause of mortality in the world affectingboth men and women equally.When a radiologist just focuses on the patient’sbody, it increases the amount of strain on the radiologist and the likelihoodof missing pathological information such as abnormalities are increased.One of the primary objectives of this research work is to develop computerassisteddiagnosis and detection of lung cancer. It also intends to make iteasier for radiologists to identify and diagnose lung cancer accurately. Theproposed strategy which was based on a unique image feature, took intoconsideration the spatial interaction of voxels that were next to one another.Using the U-NET+Three parameter logistic distribution-based technique, wewere able to replicate the situation. The proposed technique had an averageDice co-efficient (DSC) of 97.3%, a sensitivity of 96.5% and a specificity of94.1% when tested on the Luna-16 dataset. This research investigates howdiverse lung segmentation, juxta pleural nodule inclusion, and pulmonarynodule segmentation approaches may be applied to create Computer AidedDiagnosis (CAD) systems. When we compared our approach to four otherlung segmentation methods, we discovered that ours was the most successful.We employed 40 patients from Luna-16 datasets to evaluate this. In termsof DSC performance, the findings demonstrate that the suggested techniqueoutperforms the other strategies by a significant margin.
基金Supported by the Foundation for Cultivating the Excellent Doctoral Dissertation of Jiangxi Province of China (YBP08A03)~~
文摘The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.
文摘Nowadays, computer vision as an interdisciplinary field is growing in different areas such as medical, electronics, etc. In the field, detection and particularly image segmentation is an essential task in which is difficult to find the appropriate one based on the application. In this paper, a new algorithm is proposed to segment the lesion from background. The algorithm is based on log edge detector with iterative median filtering. We have tested our algorithm on 20 dermoscopic images and compare the lesion detection results with those manually segmented by dermatologists. The experiments represent the effectiveness of proposed algorithm.
文摘BACKGROUND Delays in sentinel lymph node(SLN)biopsy may affect the positivity of non-SLNs.For these reasons,effort is being directed at obtaining reliable information regarding SLN positivity prior to surgical excision.However,the existing tools,e.g.,dermoscopy,do not recognize statistically significant predictive criteria for SLN positivity in melanomas.AIM To investigate the possible association of computer-assisted objectively obtained color,color texture,sharpness and geometry variables with SLN positivity.METHODS We retrospectively reviewed and analyzed the computerized medical records of all patients diagnosed with cutaneous melanoma in a tertiary hospital in Germany during a 3-year period.The study included patients with histologically confirmed melanomas with Breslow>0.75 mm who underwent lesion excision and SLN biopsy during the study period and who had clinical images shot with a digital camera and a handheld ruler aligned beside the lesion.RESULTS Ninety-nine patients with an equal number of lesions met the inclusion criteria and were included in the analysis.Overall mean(±standard deviation)age was 66(15)years.The study group consisted of 20 patients with tumor-positive SLN(SLN+)biopsy,who were compared to 79 patients with tumor-negative SLN biopsy specimen(control group).The two groups differed significantly in terms of age(61 years vs 68 years)and histological subtype,with the SLN+patients being younger and presenting more often with nodular or secondary nodular tumors(P<0.05).The study group patients showed significantly higher eccentricity(i.e.distance between color and geometrical midpoint)as well as higher sharpness(i.e.these lesions were more discrete from the surrounding normal skin,P<0.05).Regarding color variables,SLN+patients demonstrated higher range in all four color intensities(gray,red,green,blue)and significantly higher skewness in three color intensities(gray,red,blue),P<0.05.Color texture variables,i.e.lacunarity,were comparable in both groups.CONCLUSION SLN+patients demonstrated significantly higher eccentricity,higher sharpness,higher range in all four color intensities(gray,red,green,blue)and significantly higher skewness in three color intensities(gray,red,blue).Further prospective studies are needed to better understand the effectiveness of clinical image processing in SLN+melanoma patients.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/328),Taif University,Taif,Saudi Arabia.
文摘Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.