期刊文献+
共找到2,622篇文章
< 1 2 132 >
每页显示 20 50 100
An improved pulse coupled neural networks model for semantic IoT
1
作者 Rong Ma Zhen Zhang +3 位作者 Yide Ma Xiping Hu Edith C.H.Ngai Victor C.M.Leung 《Digital Communications and Networks》 SCIE CSCD 2024年第3期557-567,共11页
In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the... In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information. 展开更多
关键词 Internet of things(IoT) Semantic information Real-time application Improved pulse coupled neural network Image segmentation
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
2
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 Artificial neural network Drop size Solvent extraction pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm
3
作者 N.D.Bukharskii O.E.Vais +1 位作者 Ph.A.Korneev V.Yu.Bychenkov 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2023年第1期28-42,共15页
A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distribut... A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases.For these purposes,we use a convolutional neural network architecture.Training and testing datasets are calculated using the test particle method,with the laser description in the form of Stratton-Chu integrals,which model laser pulses focused by an off-axis parabolic mirror down to the diffraction limit.To demonstrate the power and robustness of this method,we discuss the reconstruction of axially symmetric intensity profiles for laser pulses with intensities and focal diameters in the ranges of 10^(21)-10^(23) W cm^(−2) and ~(1-4)λ,respectively.This approach has prospects for implementation at higher intensities and with asymmetric laser beams,and it can provide a valuable diagnostic method for emerging extremely intense laser facilities. 展开更多
关键词 network pulse POWER
下载PDF
Artificial neural network algorithm for pulse shape discrimination in 2πα and 2πβ particle surface emission rate measurements
4
作者 Yuan-Qiao Li Bao-Ji Zhu +4 位作者 Yang Lv Heng Zhu Min Lin Ke-Sheng Chen Li-Jun Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期91-102,共12页
To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN... To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques. 展开更多
关键词 pulse shape discrimination Artificial neural networks Alpha and beta sources Multi-wire proportional counter Surface emission rate
下载PDF
High current pulse forming network switched by static induction thyristor
5
作者 Juan Perez Taichi Sugai +4 位作者 Weihua Jiang Akira Tokuchi Masayuki Horie Yuya Ohshio Kazuma Ueno 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第5期261-266,共6页
A high-current pulse forming network (PFN) has been developed for applications to artificial solar-wind generation. It is switched by staticinduction thyristor (SIThy) and is capable of generating pulsed current of ~... A high-current pulse forming network (PFN) has been developed for applications to artificial solar-wind generation. It is switched by staticinduction thyristor (SIThy) and is capable of generating pulsed current of ~9.7 kA for a time duration of ~1 ms. The SIThy switch module ismade that it can be controlled by an optical signal and it can be operated at elevated electrical potential. The experiments reported in this paperused two switch modules connected in series for maximum operating voltage of 3.5 kV. The experimental results have demonstrated a pulsedhigh-current generator switched by semiconductor devices, as well as the control and operation of SIThy for pulsed power application. 展开更多
关键词 pulsed power pulse forming network Power semiconductor device THYRISTOR High voltage
下载PDF
Compositional optimization of glass forming alloys based on critical dimension by using artificial neural network 被引量:2
6
作者 蔡安辉 熊翔 +6 位作者 刘咏 安伟科 周果君 罗云 李铁林 李小松 谭湘夫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1458-1466,共9页
An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on... An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy. 展开更多
关键词 critical dimension glass forming alloy artificial neural network metallic glasses
下载PDF
Investigation of Helical Pulse Forming Line 被引量:3
7
作者 刘振祥 张建德 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第5期596-599,共4页
To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The res... To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse. 展开更多
关键词 helical pulse forming line long pulse group delay DISPERSION
下载PDF
Study on the Classification of Pulse Signal Based on the BP Neural Network 被引量:4
8
作者 Shaohua Wang Jianli Jiang Xiaobing Lu 《Journal of Biosciences and Medicines》 2020年第5期104-112,共9页
The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors ... The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors of the pulse signal. Then the method of nondimensionalization/normalization on the pulse signal is presented to preprocess the characteristic factors. The classification of the pulse signal and the effects of the selection of characteristic factors are studied by using the normalized data and BP neural network. It is shown that nondimensionalization/normalization of the data is in favor of the training and forecasting of the network. The selection of characteristic factors affects the accuracy of forecasting obviously. The results of forecasting by selection of 8, 6 and 4 factors respectively show that the less the factors are, the worse the effects are. 展开更多
关键词 BP NEURAL network pulse SIGNAL CLASSIFICATION DIMENSIONAL Analysis
下载PDF
Anti-noise performance of the pulse coupled neural network applied in discrimination of neutron and gamma-ray 被引量:3
9
作者 Hao-Ran Liu Zhuo Zuo +3 位作者 Peng Li Bing-Qi Liu Lan Chang Yu-Cheng Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期89-101,共13页
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r... In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range. 展开更多
关键词 pulse coupled neural network Zero crossing Frequency gradient analysis Vector projection Charge comparison Neutron and gamma-ray discrimination pulse shape discrimination
下载PDF
FPGA implementation of neural network accelerator for pulse information extraction in high energy physics 被引量:2
10
作者 Jun-Ling Chen Peng-Cheng Ai +5 位作者 Dong Wang Hui Wang Ni Fang De-Li Xu Qi Gong Yuan-Kang Yang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第5期27-35,共9页
Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments.For this purpose,a neural network can be an alternative in off-line data processing.For processin... Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments.For this purpose,a neural network can be an alternative in off-line data processing.For processing the data in real time and reducing the off-line data storage required in a trigger event,we designed a customized neural network accelerator on a field programmable gate array platform to implement specific layers in a convolutional neural network.The latter is then used in the front-end electronics of the detector.With fully reconfigurable hardware,a tested neural network structure was used for accurate timing of shaped pulses common in front-end electronics.This design can handle up to four channels of pulse signals at once.The peak performance of each channel is 1.665 Giga operations per second at a working frequency of 25 MHz. 展开更多
关键词 Convolutional neural networks pulse SHAPING ACCELERATION FRONT-END ELECTRONICS
下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
11
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE FUSION dual BAND pulse coupled NEURAL network(PCNN) FEATURE extraction
下载PDF
Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines 被引量:2
12
作者 Jianhua Yang Zicheng Zhang +8 位作者 Hanwu Yang Jun Zhang Jinliang Liu Yi Yin Tao Xun Xinbing Cheng Yuwei Fan Zhenxing Jin Jinchuan Ju 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第6期278-292,共15页
This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in Chin... This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used todrive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storagemedia are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in theinvention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquidPFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps)and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses howthese compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and theconclusions that can be drawn from the results. 展开更多
关键词 High-power microwave(HPM) Intense electron-beam accelerator(IEBA) pulsed power technology(PPT) pulse forming line(PFL) Fluid of high energy density De-ionized water GLYCERIN
下载PDF
Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain 被引量:121
13
作者 QU Xiao-Bo YAN Jing-Wen +1 位作者 XIAO Hong-Zhi ZHU Zi-Qian 《自动化学报》 EI CSCD 北大核心 2008年第12期1508-1514,共7页
Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视... Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视觉启发外皮的神经网络并且由全球联合和神经原的脉搏同步描绘。它为图象处理被证明合适并且成功地在图象熔化采用。在这份报纸, NSCT 与 PCNN 被联系并且在图象熔化使用了充分利用他们的特征。在 NSCT 领域的空间频率是输入与大开火的时间在 NSCT 领域激发 PCNN 和系数作为熔化图象的系数被选择。试验性的结果证明建议算法超过典型基于小浪,基于 contourlet,基于 PCNN,并且 contourlet-PCNN-based 熔化算法以客观标准和视觉外观。 展开更多
关键词 图像融合算法 空间频率 脉冲耦合神经网络 变换域 自动化系统
下载PDF
Pulse frequency classification based on BP neural network 被引量:1
14
作者 WANG Rui WANG Xu +1 位作者 YANG Dan FU Rong 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期471-473,共3页
关键词 反向神经网络 脉搏频率 中医学 分类 脉搏形式
下载PDF
Neural Network Modeling and System Simulating for the Dynamic Process of Varied Gap Pulsed GTAW with Wire Filler
15
作者 Guangjun ZHANG Shanben CHEN Lin WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期515-520,共6页
As the base of the research work on the weld shape control during pulsed gas tungsten arc welding (GTAW) with wire filler, this paper addressed the modeling of the dynamic welding process. Topside length Lt, maximum... As the base of the research work on the weld shape control during pulsed gas tungsten arc welding (GTAW) with wire filler, this paper addressed the modeling of the dynamic welding process. Topside length Lt, maximum width Wt and half-length ratio Rh1 were selected to depict topside weld pool shape, and were measured on-line by vision sensing. A dynamic neural network model was constructed to predict the usually unmeasured backside width and topside height of the weld through topside shape parameters and welding parameters. The inputs of the model were the welding parameters (peak current, pulse duty ratio, welding speed, filler rate), the joint gap, the topside pool shape parameters (Lt, Wt, and Rh1), and their history values at two former pulse, a total of 24 numbers. The validating experiment results proved that the artificial neural network (ANN) model had high precision and could be used in process control. At last, with the developed dynamic model, steady and dynamic behavior was analyzed by simulation experiments, which discovered the variation rules of weld pool shape parameters under different welding parameters, and further knew well the characteristic of the welding process. 展开更多
关键词 Modeling Neural network Dynamic welding process pulsed GTAW
下载PDF
Self-learning fuzzy neural network control for backside width of weld pool in pulsed GTAW with wire filler
16
作者 张广军 陈善本 吴林 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期47-50,共4页
The weld pool shape control by intelligent strategy was studied. In order to improve the ability of self-learning and self-adaptation of the ordinary fuzzy control, a self-learning fuzzy neural network controller (FNN... The weld pool shape control by intelligent strategy was studied. In order to improve the ability of self-learning and self-adaptation of the ordinary fuzzy control, a self-learning fuzzy neural network controller (FNNC) for backside width of weld pool in pulsed gas tungsten arc welding (GTAW) with wire filler was designed. In FNNC, the fuzzy system was expressed by an equivalence neural network, the membership functions and inference rulers were decided through the learning of the neural network. Then, the FNNC control arithmetic was analyzed, simulating experiment was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were implemented. The maximum error between the real value and the given one was 0.39mm, the mean error was 0.014mm, and the root-mean-square was 0.14mm. The real backside width was maintained around the given value. The results show that the self-learning fuzzy neural network control strategy can achieve a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model. 展开更多
关键词 fuzzy neural network CONTROL backside WIDTH pulseD GTAW WIRE FILLER intelligent CONTROL
下载PDF
Linear Pulse-Coupled Oscillators Model¬—A New Approach for Time Synchronization in Wireless Sensor Networks 被引量:4
17
作者 Zhulin An Hongsong Zhu +3 位作者 Meilin Zhang Chaonong Xu Yongjun Xu Xiaowei Li 《Wireless Sensor Network》 2010年第2期108-114,共7页
Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we... Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we analyze the synchronization condition of two- and multi-oscillators system, and propose a linear pulse-coupled oscillators model. We prove that the proposed model can achieve synchronization for almost all conditions. Numerical simulations are also included to investigate how different model parameters affect the synchronization. We also discuss the implementation of the model as a new approach for time synchronization in wireless sensor networks. 展开更多
关键词 SYNCHRONIZATION Biologically Inspired ALGORITHMS pulse-Coupled Oscillators WIRELESS Sensor networks
下载PDF
Information Fusing Recognition of Traditional Chinese Medicine (TCM) Pulse State Based on Stochastic Fuzzy Neural Network 被引量:1
18
作者 QIN Jian LIU Hong-jian DENG Wei WU Guo-zhen CHEN Shu-qing JING Ming-hua 《Chinese Journal of Biomedical Engineering(English Edition)》 2005年第3期114-119,共6页
Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres... Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers. 展开更多
关键词 Stochastic fuzzy neural network Information fusing pulse state recognition
下载PDF
The dynamic relaxation form finding method aided with advanced recurrent neural network 被引量:1
19
作者 Liming Zhao Zhongbo Sun +1 位作者 Keping Liu Jiliang Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期635-644,共10页
How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficien... How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm. 展开更多
关键词 dynamic relaxation form‐finding noise‐tolerant zeroing neural network sequential quadratic programming TENSEGRITY
下载PDF
Irregular Segmented Region Compression Coding Based on Pulse Coupled Neural Network
20
作者 MA Yi-de QI Chun-liang +2 位作者 QIAN Zhi-bai SHI Fei ZHANG Bei-dou 《Semiconductor Photonics and Technology》 CAS 2006年第2期110-116,130,共8页
An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approx... An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible. 展开更多
关键词 pulse coupled neural network SEGMENTATION Orthonormal basis Compression coding possible.
下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部