Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, p...Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition.展开更多
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ...To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models.展开更多
Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence...Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.展开更多
The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the stu...The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas.展开更多
Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, m...Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.展开更多
The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire...To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.展开更多
The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, ...The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, coal-fired boiler,gas-fired boiler and biomass boiler, etc.) of backward coal-firedindustrial boiler in technology, economy and environment, etc.;has evaluated comprehensive effect and adaptiveconditions of coal-fired industry boiler technology and has put forward suggestion forefficient development of coal-fired industry boiler clearing.展开更多
In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign meth...In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.展开更多
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com...Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.展开更多
Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, i...Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.展开更多
文摘Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition.
基金The National Natural Science Foundation of China(No.71471060)Natural Science Foundation of Hebei Province(No.E2018502111)
文摘To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models.
文摘Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.
基金Supported by Key Scientific Research Projects of Sichuan Provincial Department of Technology (2010JY0165)Key Special Scientific Research Projects of Mianyang City of Sichuan Province (09Y003-13)Key Scientific Research Projects of Sichuan Provincial Department of Education (2003A112)
文摘The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas.
文摘Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.
文摘The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
文摘To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.
文摘The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, coal-fired boiler,gas-fired boiler and biomass boiler, etc.) of backward coal-firedindustrial boiler in technology, economy and environment, etc.;has evaluated comprehensive effect and adaptiveconditions of coal-fired industry boiler technology and has put forward suggestion forefficient development of coal-fired industry boiler clearing.
文摘In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.
基金This paper is supported by the National Key R&D Program of China(2017YFB0601805).
文摘Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.
文摘Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.