Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped ...Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped laser, and 4-mW laser output power achieved. The second NPL experiment focused on the small signal gain and the efficiency of the nuclear pumped He-Ar-Xe gas mixture at 1.73 μm. The maximum laser power measured to be 45 mW when thermal neutron flux rate is 6.9 × 1014 cm-2 · s-1. The small signal gain at 1.73 μm by the Rigrod analysis method is to be 0.24%-cm'1, and the saturation intensity is fitted to be 36 W/cm2.展开更多
Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum i...An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.展开更多
We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.0...We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.展开更多
An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incid...An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.展开更多
We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybr...We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.展开更多
This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm th...This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.展开更多
A laser diode (LD) pumped Q switched high efficient intracavity frequency doubled Nd ∶YAG laser is reported here. The authors have designed an optical coupler and pointed out that the key to increasing harmonic conve...A laser diode (LD) pumped Q switched high efficient intracavity frequency doubled Nd ∶YAG laser is reported here. The authors have designed an optical coupler and pointed out that the key to increasing harmonic conversion efficiency is to decrease the loss of fundamental wave. In the experiments, a fundamental mode output laser was acquired. When the pumping power was 12 W, 2.6 W average output power at 1 064 nm with AO Q switch was obtained. 2.1 W average output power at 532 nm was obtained with intracavity frequency doubling, and the highest second harmonic conversion efficiency was 82 0 0.展开更多
To assess the effectiveness of the flashlamp- pumped pulsed dye laser (Photogeneca V, Synosure Corp, Boston, United States) in the treatment of port- wine stains. Methods. One hundred and ninety- four consecutive pati...To assess the effectiveness of the flashlamp- pumped pulsed dye laser (Photogeneca V, Synosure Corp, Boston, United States) in the treatment of port- wine stains. Methods. One hundred and ninety- four consecutive patients with port- wine stains were treated with a flashlamp- pumped pulsed dye laser in Peking Union Medical College Hospital from January 1998 to August 1999. Results. Of 194 patients who completed treatment, 56.2% had more than 60% fading of the lesion and only 6.7% had less than 20% fading. An average of 3.6 treatments were needed to achieve more than 60% fading. The response was better in children than in adults, although the difference was not significant. Pigmentary change (usually transient) occurred in 3.1% of patients. Conclusions. This study confirms the efficacy of the flashlamp- pumped pulsed dye laser in the treatment of port- wine stains in children and adults.展开更多
We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of...We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.展开更多
We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump....We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.展开更多
We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at...We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.展开更多
We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal...We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M^2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.展开更多
A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an import...A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.展开更多
The sub-Doppler absorption laser spectroscopy at 728nm transition from the 5D5/2 state to the 6F state of cesium with linewidth near 10 MHz is first experimentally performed with indirect pumping from the ground state...The sub-Doppler absorption laser spectroscopy at 728nm transition from the 5D5/2 state to the 6F state of cesium with linewidth near 10 MHz is first experimentally performed with indirect pumping from the ground state 6S1/2 to the state 7P3/2 by a 455.5nm diode laser. Using a 455.5nm diode laser as an indirect pump laser, several excited states will be populated due to spontaneous decay from the 7P state. We first implement the sub-Doppler absorption laser spectroscopy at 728nm from the 5D5/2 state to the 6F state when Cs atoms within thermal glass cell decay to the 5D5/2 state. Due to velocity transfer effect, the hyperfine structure of 5D5/2 shows a mixed and complicated pattern but very e/ear structure when the 455.5nm pumping laser is counter-propagating (or co-propagating) with the 728nm probing laser.展开更多
Considering the atmospheric extinction and turbulence effects,we investigate the propagation performances of supercontinuum laser sources in atmospheric turbulence statistically by using the numerical simulation metho...Considering the atmospheric extinction and turbulence effects,we investigate the propagation performances of supercontinuum laser sources in atmospheric turbulence statistically by using the numerical simulation method,and the differences in propagation properties between the super-continuum(SC)laser and its pump laser are also analyzed.It is found that the propagation characteristics of super-continuum laser are almost similar to those of the pump laser.The degradation of source coherence degree may cause the relative beam spreading and scintillation indexes to decrease at different propagation distances or different turbulence strengths.The root-mean-square value of beam wandering is insensitive to the variation of source correlation length,and less aperture averaging occurs when the laser source becomes less coherent.Additionally,from the point of view of beam wandering,the SC laser has no advantage over the pump laser.Although the pump laser can bring about a bigger aperture average,the SC laser has a lower scintillation which may be due to the multiple wavelength homogenization effects on intensity fluctuations.This would be the most important virtue of the SC laser that can be utilized to improve the performance of laser engineering.展开更多
Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth ...Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to bipartite entanglement is discussed.展开更多
We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to pro...We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.展开更多
A diode-pumped single frequcncy Tm,Ho:YLF laser operating at an eye-safe wavelength of 2 μm has been developed. Temperature of the laser crystal was controlled at room temperature with a thermoelectric cooler. The l...A diode-pumped single frequcncy Tm,Ho:YLF laser operating at an eye-safe wavelength of 2 μm has been developed. Temperature of the laser crystal was controlled at room temperature with a thermoelectric cooler. The line-width narrowing elements were two solid uncoated fused silica etalons whose thicknesses were 1 and 0.1 mm, respectively. Continuous wave single frequency power of 113 mW was obtained.展开更多
文摘Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped laser, and 4-mW laser output power achieved. The second NPL experiment focused on the small signal gain and the efficiency of the nuclear pumped He-Ar-Xe gas mixture at 1.73 μm. The maximum laser power measured to be 45 mW when thermal neutron flux rate is 6.9 × 1014 cm-2 · s-1. The small signal gain at 1.73 μm by the Rigrod analysis method is to be 0.24%-cm'1, and the saturation intensity is fitted to be 36 W/cm2.
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant Nos 2013M540288 and 2015M570290+2 种基金the Fundamental Research Funds for the Central Universities Grant under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.
基金Supported by the National Natural Science Foundation of China under Grant No 51572053
文摘We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.
基金Project supported by Tianjin City High School Science&Technology Fund Planning Project(Grant No.20140703)
文摘An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.
基金Supported by the University of Malaya under Grant No PG175-2015B
文摘We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.
基金Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007)partly by the National Basic Research Program of China (973 Program)(Grant No. 61328)
文摘This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
文摘A laser diode (LD) pumped Q switched high efficient intracavity frequency doubled Nd ∶YAG laser is reported here. The authors have designed an optical coupler and pointed out that the key to increasing harmonic conversion efficiency is to decrease the loss of fundamental wave. In the experiments, a fundamental mode output laser was acquired. When the pumping power was 12 W, 2.6 W average output power at 1 064 nm with AO Q switch was obtained. 2.1 W average output power at 532 nm was obtained with intracavity frequency doubling, and the highest second harmonic conversion efficiency was 82 0 0.
文摘To assess the effectiveness of the flashlamp- pumped pulsed dye laser (Photogeneca V, Synosure Corp, Boston, United States) in the treatment of port- wine stains. Methods. One hundred and ninety- four consecutive patients with port- wine stains were treated with a flashlamp- pumped pulsed dye laser in Peking Union Medical College Hospital from January 1998 to August 1999. Results. Of 194 patients who completed treatment, 56.2% had more than 60% fading of the lesion and only 6.7% had less than 20% fading. An average of 3.6 treatments were needed to achieve more than 60% fading. The response was better in children than in adults, although the difference was not significant. Pigmentary change (usually transient) occurred in 3.1% of patients. Conclusions. This study confirms the efficacy of the flashlamp- pumped pulsed dye laser in the treatment of port- wine stains in children and adults.
基金Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B090904003)the National Natural Science Foundation of China(Grant Nos.11774410 and 91850209)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16030200).
文摘We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.
基金Supported by the National Natural Science Foundation of China under Grant No 61735011the Natural Science Foundation of Hebei Province under Grant Nos F2016203389 and F2018105036+2 种基金the Science and Technology Research Project of College and University in Hebei Province under Grant No BJ2017108the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing under Grant No KDXS1107the Science and Technology Project of Tangshan City under Grant No 17130257a
文摘We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.
文摘We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M^2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.
基金Supported by the National Fundamental Research Program of China under Grant No 2011CB921501the National Natural Science Foundation of China under Grant Nos 91336103,10934010 and 61078026
文摘A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.
基金Supported by the National Natural Science Foundation of China under Grant No 91436210
文摘The sub-Doppler absorption laser spectroscopy at 728nm transition from the 5D5/2 state to the 6F state of cesium with linewidth near 10 MHz is first experimentally performed with indirect pumping from the ground state 6S1/2 to the state 7P3/2 by a 455.5nm diode laser. Using a 455.5nm diode laser as an indirect pump laser, several excited states will be populated due to spontaneous decay from the 7P state. We first implement the sub-Doppler absorption laser spectroscopy at 728nm from the 5D5/2 state to the 6F state when Cs atoms within thermal glass cell decay to the 5D5/2 state. Due to velocity transfer effect, the hyperfine structure of 5D5/2 shows a mixed and complicated pattern but very e/ear structure when the 455.5nm pumping laser is counter-propagating (or co-propagating) with the 728nm probing laser.
基金Project supported by the Director Fund of Advanced Laser Technology Laboratory of Anhui Province,China(Grant No.20191002).
文摘Considering the atmospheric extinction and turbulence effects,we investigate the propagation performances of supercontinuum laser sources in atmospheric turbulence statistically by using the numerical simulation method,and the differences in propagation properties between the super-continuum(SC)laser and its pump laser are also analyzed.It is found that the propagation characteristics of super-continuum laser are almost similar to those of the pump laser.The degradation of source coherence degree may cause the relative beam spreading and scintillation indexes to decrease at different propagation distances or different turbulence strengths.The root-mean-square value of beam wandering is insensitive to the variation of source correlation length,and less aperture averaging occurs when the laser source becomes less coherent.Additionally,from the point of view of beam wandering,the SC laser has no advantage over the pump laser.Although the pump laser can bring about a bigger aperture average,the SC laser has a lower scintillation which may be due to the multiple wavelength homogenization effects on intensity fluctuations.This would be the most important virtue of the SC laser that can be utilized to improve the performance of laser engineering.
文摘Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to bipartite entanglement is discussed.
文摘We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.
基金This work was supported by the Scientic Re-search Foundation of Harbin Engineering Univer-sity (HEUF04014)
文摘A diode-pumped single frequcncy Tm,Ho:YLF laser operating at an eye-safe wavelength of 2 μm has been developed. Temperature of the laser crystal was controlled at room temperature with a thermoelectric cooler. The line-width narrowing elements were two solid uncoated fused silica etalons whose thicknesses were 1 and 0.1 mm, respectively. Continuous wave single frequency power of 113 mW was obtained.