A novel high-voltage light punch-through(LPT) carrier stored trench bipolar transistor(CSTBT) with buried p-layer(BP) is proposed in this paper.Since the negative charges in the BP layer modulate the bulk electr...A novel high-voltage light punch-through(LPT) carrier stored trench bipolar transistor(CSTBT) with buried p-layer(BP) is proposed in this paper.Since the negative charges in the BP layer modulate the bulk electric field distribution,the electric field peaks both at the junction of the p base/n-type carrier stored(N-CS) layer and the corners of the trench gates are reduced,and new electric field peaks appear at the junction of the BP layer/N drift region.As a result,the overall electric field in the N drift region is enhanced and the proposed structure improves the breakdown voltage(BV) significantly compared with the LPT CSTBT.Furthermore,the proposed structure breaks the limitation of the doping concentration of the N-CS layer(NN CS) to the BV,and hence a higher NN CS can be used for the proposed LPT BP-CSTBT structure and a lower on-state voltage drop(Vce(sat)) can be obtained with almost constant BV.The results show that with a BP layer doping concentration of NBP = 7 × 10^15 cm^-3,a thickness of LBP = 2.5 μm,and a width of WBP = 5 μm,the BV of the proposed LPT BP-CSTBT increases from 1859 V to 1862 V,with NN CS increasing from 5 × 10^15 cm^-3 to 2.5 × 10^16 cm^-3.However,with the same N-drift region thickness of 150 μm and NN CS,the BV of the CSTBT decreases from 1598 V to 247 V.Meanwhile,the Vce(sat) of the proposed LPT BP-CSTBT structure decreases from 1.78 V to 1.45 V with NN CS increasing from 5 × 10^15 cm^-3 to 2.5 × 10^16 cm^-3.展开更多
Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan in...Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan into sand overlying clay. The sand is simulated by smoothed hyperbolic Mohr-Coulomb model, and the clay is simulated by a simple elasto-plastic model which obeys Tresca yield criterion. According to the LDFE results of a large amount of cases, the effects of the strength, unit weight and thickness of the top sand layer, as well as the effect of the strength of the underlying clay on the spudcan punch-through behavior, are investigated. The critical depth occurring punch-through and the critical bearing capacity are presented in charts. Fitting equations to calculate the critical punch-through depth and the critical bearing capacity are proposed for the convenience of engineering practice.展开更多
A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channe...A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.展开更多
基金Project supported by the National Science and Technology Major Project of China (Grant No. 2011ZX02504-003) and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2011J024).
文摘A novel high-voltage light punch-through(LPT) carrier stored trench bipolar transistor(CSTBT) with buried p-layer(BP) is proposed in this paper.Since the negative charges in the BP layer modulate the bulk electric field distribution,the electric field peaks both at the junction of the p base/n-type carrier stored(N-CS) layer and the corners of the trench gates are reduced,and new electric field peaks appear at the junction of the BP layer/N drift region.As a result,the overall electric field in the N drift region is enhanced and the proposed structure improves the breakdown voltage(BV) significantly compared with the LPT CSTBT.Furthermore,the proposed structure breaks the limitation of the doping concentration of the N-CS layer(NN CS) to the BV,and hence a higher NN CS can be used for the proposed LPT BP-CSTBT structure and a lower on-state voltage drop(Vce(sat)) can be obtained with almost constant BV.The results show that with a BP layer doping concentration of NBP = 7 × 10^15 cm^-3,a thickness of LBP = 2.5 μm,and a width of WBP = 5 μm,the BV of the proposed LPT BP-CSTBT increases from 1859 V to 1862 V,with NN CS increasing from 5 × 10^15 cm^-3 to 2.5 × 10^16 cm^-3.However,with the same N-drift region thickness of 150 μm and NN CS,the BV of the CSTBT decreases from 1598 V to 247 V.Meanwhile,the Vce(sat) of the proposed LPT BP-CSTBT structure decreases from 1.78 V to 1.45 V with NN CS increasing from 5 × 10^15 cm^-3 to 2.5 × 10^16 cm^-3.
基金supported by the National Natural Science Foundation of China(Grant Nos.50978045,51121005 and 51209033)
文摘Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan into sand overlying clay. The sand is simulated by smoothed hyperbolic Mohr-Coulomb model, and the clay is simulated by a simple elasto-plastic model which obeys Tresca yield criterion. According to the LDFE results of a large amount of cases, the effects of the strength, unit weight and thickness of the top sand layer, as well as the effect of the strength of the underlying clay on the spudcan punch-through behavior, are investigated. The critical depth occurring punch-through and the critical bearing capacity are presented in charts. Fitting equations to calculate the critical punch-through depth and the critical bearing capacity are proposed for the convenience of engineering practice.
基金Project supported by National Natural Science Foundation of China(Grant No.60906038)
文摘A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.