The simulation on pyrolysis products of pure PF resin with different chemical structure was investigated and validated by pyrolysis gas-chromatography mass spectrometry(Py-GC/MS).The simulation of pyrolysis products o...The simulation on pyrolysis products of pure PF resin with different chemical structure was investigated and validated by pyrolysis gas-chromatography mass spectrometry(Py-GC/MS).The simulation of pyrolysis products of phenolic resin with different chemical structure was investigated by AMBER(Assisted Model Building with Energy Refinement)force field.The content of pyrolysis products phenol and cresol decreases with the increase of F/P(formaldehyde/phenol)value.The content of pyrolysis products dimethylphenol and trimethylphenol increases with the enhancement of F/P value.The crosslink density of phenolic mixture can be measured by the content of pyrolysis products dimethylphenol and trimethylphenol.Consequently,the results of simulation were validated by the Py-GC/MS experiment.展开更多
Temperature is the determining factor of pyro-lysis,which is one of the alternative technologies for oil sludge treatment.The effects of final operating temper-ature ranging from 350 to 550uC on pyrolysis products of ...Temperature is the determining factor of pyro-lysis,which is one of the alternative technologies for oil sludge treatment.The effects of final operating temper-ature ranging from 350 to 550uC on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor.With an increase of temperature,the mass fraction of solid residues,liquids,and gases in the final product is 67.00%–56.00%,25.60%–32.35%,and 7.40%–11.65%,and their corresponding heat values are 34.4–13.8 MJ/kg,44.41–46.6 MJ/kg,and 23.94–48.23 MJ/Nm 3,respectively.The mass and energy tend to shift from solid to liquid and gas phase(especially to liquid phase)during the process,and the optimum temperature for oil sludge pyrolysis is 500uC.The liquid phase is mainly com-posed of alkane and alkene(C_(5)–C_(29)),and the gas phase is dominantly HC S and H 2.展开更多
Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier tran...Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier transformation infrared spectrometrymass spectrum.Diesel particles were collected at the same location with and without diesel oxidation catalyst(DOC)mounted on the test engine separately.The three poles in thermal gravity-differential thermal gravity images suggested that the decomposition process of diesel particles could be divided into three stages which correspond to the decompositions of lower boiling substances,higher boiling substances and soot respectively.It is noticed that no matter whether DOC was mounted or not,the further the particles were sampled away from the engine block,the lower the peak temperatures and the heavier the mass losses within the first two stages,which indicated that the soluble organic fraction in the particle samples increased and therefore lowering the activation energy of thermal decomposition.Hydroxyl,ammonia,C_xH_y fragments,benzene,toluene,and phenol were found to be the primary products of particle decomposition,which didn’t change with the location of particle sample point.The employment of DOC increased the activation energy for particle oxidation and resulted in a higher peak temperature and lower mass loss within the first-stage.Moreover,the C=O stretching bands of aldehyde and ketone at 1771 cm-1 was only detected without a DOC,while the N02 peak at 1634 cm-1 was solely noticed with the presence of DOC.Compared to the first-stage pyrolysis products,more polycyclic aromatic hydrocarbons and less C_xH_y fragments were seen in the second-stage.展开更多
文摘The simulation on pyrolysis products of pure PF resin with different chemical structure was investigated and validated by pyrolysis gas-chromatography mass spectrometry(Py-GC/MS).The simulation of pyrolysis products of phenolic resin with different chemical structure was investigated by AMBER(Assisted Model Building with Energy Refinement)force field.The content of pyrolysis products phenol and cresol decreases with the increase of F/P(formaldehyde/phenol)value.The content of pyrolysis products dimethylphenol and trimethylphenol increases with the enhancement of F/P value.The crosslink density of phenolic mixture can be measured by the content of pyrolysis products dimethylphenol and trimethylphenol.Consequently,the results of simulation were validated by the Py-GC/MS experiment.
基金This work was supported by the National High-Tech Research and Development(863)Program of China(Grant No.2006AA06Z370).
文摘Temperature is the determining factor of pyro-lysis,which is one of the alternative technologies for oil sludge treatment.The effects of final operating temper-ature ranging from 350 to 550uC on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor.With an increase of temperature,the mass fraction of solid residues,liquids,and gases in the final product is 67.00%–56.00%,25.60%–32.35%,and 7.40%–11.65%,and their corresponding heat values are 34.4–13.8 MJ/kg,44.41–46.6 MJ/kg,and 23.94–48.23 MJ/Nm 3,respectively.The mass and energy tend to shift from solid to liquid and gas phase(especially to liquid phase)during the process,and the optimum temperature for oil sludge pyrolysis is 500uC.The liquid phase is mainly com-posed of alkane and alkene(C_(5)–C_(29)),and the gas phase is dominantly HC S and H 2.
基金supported by the Open Research Program of State Key Laboratory of Engine Combustion(No.K2018-11)the National Nature Science Foundation of China(No.51806015)the National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2018A17)
文摘Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier transformation infrared spectrometrymass spectrum.Diesel particles were collected at the same location with and without diesel oxidation catalyst(DOC)mounted on the test engine separately.The three poles in thermal gravity-differential thermal gravity images suggested that the decomposition process of diesel particles could be divided into three stages which correspond to the decompositions of lower boiling substances,higher boiling substances and soot respectively.It is noticed that no matter whether DOC was mounted or not,the further the particles were sampled away from the engine block,the lower the peak temperatures and the heavier the mass losses within the first two stages,which indicated that the soluble organic fraction in the particle samples increased and therefore lowering the activation energy of thermal decomposition.Hydroxyl,ammonia,C_xH_y fragments,benzene,toluene,and phenol were found to be the primary products of particle decomposition,which didn’t change with the location of particle sample point.The employment of DOC increased the activation energy for particle oxidation and resulted in a higher peak temperature and lower mass loss within the first-stage.Moreover,the C=O stretching bands of aldehyde and ketone at 1771 cm-1 was only detected without a DOC,while the N02 peak at 1634 cm-1 was solely noticed with the presence of DOC.Compared to the first-stage pyrolysis products,more polycyclic aromatic hydrocarbons and less C_xH_y fragments were seen in the second-stage.