期刊文献+
共找到1,009篇文章
< 1 2 51 >
每页显示 20 50 100
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin 被引量:1
1
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 pyrolysis reaction of waste resin FLUIDIZATION Particle agglomeration KAOLIN
下载PDF
Effect of long reaction distance on gas composition from organic-rich shale pyrolysis under high-temperature steam environment
2
作者 Lei Wang Rui Zhang +4 位作者 Guoying Wang Jing Zhao Dong Yang Zhiqin Kang Yangsheng Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期102-119,共18页
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g... When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment. 展开更多
关键词 Steam temperature pyrolysis gas Hydrogen-rich reaction distance Direct retorting
下载PDF
Pyrolysis of Copper Phthalocyanine as Non-noble Metal Electrocatalysts for Oxygen Reduction Reaction
3
作者 ZHANG Lijuan LU Jinhua +1 位作者 WANG Yan LI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1087-1092,共6页
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP... We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells. 展开更多
关键词 copper phthalocyanine pyrolysis ELECTROCATALYTIC oxygen reduction reaction
下载PDF
Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction 被引量:3
4
作者 Yifan Ye Fan Cai +3 位作者 Chengcheng Yan Yanshuo Li Guoxiong Wang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1174-1180,共7页
Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly effi... Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic medium, which is derived from ZIF-8 functionalized with ammonium ferric citrate via two-step pyrolysis in Ar and NHatmosphere.The results reveal that the catalytic activity improvement after NH3 pyrolysis benefits from mesoporedominated morphology and high utilization of Fe-containing active sites. The optimum catalyst shows excellent performance in zinc-air battery and polymer electrolyte membrane fuel cell tests. 展开更多
关键词 Zeolitic imidazolate frameworks Two-step pyrolysis Oxygen reduction reaction Zinc-air battery Polymer electrolyte membrane fuel cell
下载PDF
N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media 被引量:2
5
作者 Juan Nong Min Zhu +4 位作者 Kun He Aosheng Zhu Pu Xie Minzhi Rong Mingqiu Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期220-226,共7页
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only sh... Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline medium,and become less effective in acidic environment.We believe that an appropriate combination of both ionic and electronic transport path,and well dopant distribution of doped carbon-based materials would help to realize high ORR performance un-der both acidic and alkaline cond让ions.Accordingly,a nitrogen and sulfur co-doped carbon framework with hierarchical through-hole structure is fabricated by morphology-controlled solid-state pyrolysis of poly(aniline-co-2-ami no thiophenol)foam.The uniform high concentrations of nitrogen and sulfur,high intrinsic conductivity,and integrated three dimensional ionic and electronic transfer passageways of the 3D porous structure lead to synergistic effects in catalyzing ORR.As a result,the limiting current density of the carbonized poly(aniline-co-2-aminothiophenol)foam is equivalent to commercial Pt/C in acidic environment,and twice the latter in alkaline medium. 展开更多
关键词 3D N/S-doped CARBON frameworks Oxygen reduction reaction(ORR) Morphology-retaining pyrolysis ACIDIC medium
下载PDF
Reaction mechanism and kinetics of pressurized pyrolysis of Chinese oil shale in the presence of water 被引量:2
6
作者 FANG Chaohe LI Shuyuan +2 位作者 MA Guili WANG Hongyan HUANG Zhilong 《Petroleum Science》 SCIE CAS CSCD 2012年第4期532-534,共3页
A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground th... A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen. 展开更多
关键词 Oil shale PYROBITUMEN pressurized pyrolysis in-situ underground retorting reaction mechanism chemical kinetics
下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
7
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE Computational fluid dynamics Thermal decomposition reaction pyrolysis furnace
下载PDF
Sustainable Biofuel Production from Brown and Green Macroalgae through the Pyrolysis
8
作者 Apip Amrullah Widya Fatriasari +2 位作者 Novia Amalia Sholeha Edy Hartulistiyoso Obie Farobie 《Journal of Renewable Materials》 EI CAS 2024年第6期1087-1102,共16页
The escalating demand for energy coupled with environmental concerns necessitates exploring sustainable alternatives to fossil fuels.The study explores the viability of using large ocean-based seaweeds as a source of ... The escalating demand for energy coupled with environmental concerns necessitates exploring sustainable alternatives to fossil fuels.The study explores the viability of using large ocean-based seaweeds as a source of thirdgeneration biomass,specifically focusing on their conversion to biofuel via the process of pyrolysis.Sargassum plagiophyllum and Ulva lactuca represent prevalent forms of macroalgae,posing significant discharge challenges for coastal regions globally.However,the exploration of their potential for bio-oil generation via pyrolysis remains limited.This study investigates the pyrolysis process of S.plagiophyllum and U.lactuca for biofuel production,aiming to provide valuable insights into their utilization and optimization.Pyrolysis experiments were conducted within temperature ranges of 400°C to 600°C and durations of 10 to 50 min using a batch reactor.The chemical analysis of the synthesized bio-oil indicated it contains critical compounds such as organic acid derivatives,furans,nitrogenous aromatics,and aliphatic hydrocarbons.The effectiveness of converting the initial biomass into bio-oil is significantly influenced by the pace at which the biomass undergoes decomposition,underscoring the importance of comprehending the kinetic aspects of this conversion.By applying the Arrhenius formula,we calculated the activation energies and frequency factors,with the findings for S.plagiophyllum being 15.27 kJ/mol and 0.477 s^(-1),and for U.lactuca,the values were 43.17 kJ/mol and 0.351 s^(-1),correspondingly.These findings underscore the potential of brown and green macroalgae as sustainable sources for biofuel production via pyrolysis,offering insights for further optimization and valorization efforts in the quest for renewable energy solutions. 展开更多
关键词 BIOMASS BIO-OIL MACROALGAE pyrolysis reaction kinetics
下载PDF
Structure and Performance of Fe-N_x-C Catalyst for Oxygen Reduction Reaction Prepared by Vacuum Casting Method and the Second Pyrolysis 被引量:1
9
作者 钱亚声 童磊 +2 位作者 邵宗贵 囤荣敏 李文木 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第6期937-947,共11页
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum ... Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts. 展开更多
关键词 oxygen reduction reaction acid medium vacuum casting reacting method temperature affected structure second pyrolysis
下载PDF
Free radical reaction model for n-pentane pyrolysis 被引量:2
10
作者 Cong Zhou Yuanyi Yang +4 位作者 Wei Li Ying Shi Li Jin Zhaobin Zhang Guoqing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期514-520,共7页
A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network i... A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network is established. The solution of the stiff ordinary differential equations in the n-pentane pyrolysis model is completed by semi implicit Eular algorithm. Then the pyrolysis mechanism based on free radical reaction model is built,and the computational efficiency increases 10 times by algorithm optimization. The validity of this model and its solution method is confirmed by the experimental results of n-pentane pyrolysis. 展开更多
关键词 pyrolysis Free radical reaction Model
下载PDF
Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor 被引量:7
11
作者 Shuai Cheng Dengguo Lai +5 位作者 Zhen Shi Leisheng Hong Jianling Zhang Xi Zeng Shiqiu Gao Guangwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第4期507-515,共9页
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting inter... Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics. 展开更多
关键词 pyrolysis absolute volatile phenols suppression evident clarified contained heating bottle
下载PDF
Insight into pyrolysis of hydrophobic silica aerogels:Kinetics,reaction mechanism and effect on the aerogels
12
作者 Xinyu Liu Hongliang Sheng +7 位作者 Song He Chunhua Du Yuansheng Ma Chichi Ruan Chunxiang He Huaming Dai Yajun Huang Yuelei Pan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期266-281,共16页
Silica aerogels have promising applications in thermal insulation,but their flammability and reaction mechanisms have rarely been investigated.The pyrolysis kinetics and thermodynamics of hydrophobic silica aerogels u... Silica aerogels have promising applications in thermal insulation,but their flammability and reaction mechanisms have rarely been investigated.The pyrolysis kinetics and thermodynamics of hydrophobic silica aerogels under N_(2) environment were studied.The kinetic and thermodynamic parameters were obtained by three model-free methods.Based on the calculated kinetic parameters,the pyrolysis mechanism of silica aerogels was discussed by the master plots method.The results indicate that the reactions of the whole pyrolysis phase can be characterized by a random nuclear model.In addition,FTIR test results show that the volatile products of silica aerogel pyrolysis are mainly hydrocarbons generated by the decomposition of hydrophobic groups(methyl groups)on the surface.Finally,the effects of pyrolysis on the properties of silica aerogels Finally,the effects of pyrolysis on the properties of silica aerogels were investigated based on the analysis results of SEM,specific surface area,pore size distribution,X-ray diffraction,XPS and infrared spectroscopy. 展开更多
关键词 pyrolysis THERMODYNAMICS reaction kinetics
下载PDF
Converting of MSW into Valuable Hydrocarbons by Pyrolysis: Effect of Paper/Plastic Ratio and Reaction Time
13
作者 N. Miskolczi N. Borsod +2 位作者 A. Angyal F. Buyong P.T. Williams 《Journal of Energy and Power Engineering》 2011年第4期291-299,共9页
Municipal solid wastes from industrial plants were pyrolyzed in a fixed bed reactor to evaluate the influence of paper/plastic ratio and reaction time both on product quantity and quality. Raw materials have been pyro... Municipal solid wastes from industrial plants were pyrolyzed in a fixed bed reactor to evaluate the influence of paper/plastic ratio and reaction time both on product quantity and quality. Raw materials have been pyrolyzed under nitrogen in a 3.0 dm^3 autoclave. Results show considerable differences in yields and quality of products obtained by pyrolysis of wastes with different paper content. Light and heavy oils were mixtures of organic compounds containing valuable hydrocarbons and oxygenated chemicals, while chars were rather composed of inorganic compounds from the raw materials. Longer reaction time of pyrolysis had produced higher non-condensable gas, water and light oil. Gases contained CO, CO2 and hydrocarbons, but the concentrations were very function of reaction time and paper/plastic ratio. Light and heavy oils showed similarities with middle distillates and heavy oils in refinery, the high paper content of the raw materials was unfavourable for longer storage of waste derived oils. 展开更多
关键词 BIO-OIL pyrolysis paper/plastic ratio reaction time oxygenated hydrocarbons.
下载PDF
Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations 被引量:1
14
作者 杨镇 何远航 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期557-563,I0001,共8页
To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal us... To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence. 展开更多
关键词 ReaxFF/lg Molecular dynamics CL20/BTF co-crystal reaction mechanism pyrolysis
下载PDF
Pyrolysis of D-Glucose to Acrolein 被引量:2
15
作者 沈翀 张颖 +1 位作者 傅钢 徐昕 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期249-252,I0003,共5页
Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for... Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for D-glucose pyrolysis to acrolein. The most feasible reaction pathway starts from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This mechanism can account for the known experimental results. 展开更多
关键词 D-GLUCOSE pyrolysis ACROLEIN reaction mechanism Density functional theory XYG3
下载PDF
A Theoretical Study on Pyrolysis and Sensitivity of Energetic Compounds(Ⅴ)──Nitro Derivatives of Methylbenzene 被引量:4
16
作者 GU Zhi-ming FAN Jian-fen +2 位作者 XIAO He-ming and DONG Hai-shan (Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, P. R. China Department of Chemistry, Suzhou University, Suzhou 215006, P. R. China Institute of Chemical M 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2000年第1期21-30,共10页
UHF-SCF-AM1 MO calculations were performed for two kinds of pyrolysis reactions of seven nitro derivatives of methylbenzene(homolysis reactions by the rupture of bond C-NO_2 into radicals and isomerization reactions ... UHF-SCF-AM1 MO calculations were performed for two kinds of pyrolysis reactions of seven nitro derivatives of methylbenzene(homolysis reactions by the rupture of bond C-NO_2 into radicals and isomerization reactions in the way of methyl H transferring to the ortho nitro O atom). The molecular geometries of the reactants, the transition states and the products of the fourteen reactions were fully optimized. The activation energies for these two kinds of reactions have been obtained. The results indicate that this category of compounds is more easily pyrolyzed by being initiated via isomerization reactions. A parallel relationship exists between the activation energy of the isomerization reactions and the impact sensitivity of the seven titled compounds. 展开更多
关键词 Nitro derivatives of toluene pyrolysis reaction UHF-SCF-AM1 MO calculation
下载PDF
Research on Ethylene and Propylene Formation during Catalytic Pyrolysis of Methylcyclohexane 被引量:3
17
作者 Yu Shan Zhang Jiushun Wei Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期73-79,共7页
The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor.... The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor. The results indicated that higher reaction temperature and lower WHSV tended to produce more ethylene and propylene, among which the reaction temperature was an important factor influencing the ethylene formation. Compared with the FAU and BEA type zeolites, the MFI structured zeolite catalyst, thanks to more acid sites and smaller pore diameter of the catalyst, was conducive to the formation of ethylene and propylene. The protonation occurred on different C—C bonds and C—H bonds in the carbon chain of MCH led to different product slates, and the protonation on C—C bonds located at naphthenic ring was favorable to the formation of ethylene and propylene. 展开更多
关键词 METHYLCYCLOHEXANE catalytic pyrolysis ETHYLENE PROPYLENE reaction pathway
下载PDF
Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst 被引量:2
18
作者 Nannan Li Wei Liu +7 位作者 Chao Zhu Ce Hao Jingya Guo Hongyu Jing Jinwen Hu Cuncun Xin Danyang Wu Yantao Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期519-527,共9页
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as w... Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N_(4) sites and a high specific area over 2000 m^(2) g^(-1) is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs. 展开更多
关键词 Ultrastrong polar solvent Molten salts one-pot pyrolysis Carbon-supported single atom catalysts Oxygen reduction reaction
下载PDF
High performance ORR electrocatalysts prepared via one-step pyrolysis of riboflavin 被引量:1
19
作者 Yuxiao Deng Haixin Huangfu +1 位作者 Shuihua Tang Jie Li 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第10期1668-1679,共12页
Efficient,cost‐effective electrocatalysts for an oxygen reduction reaction(ORR)are currently required for fuel cells.In the present work,riboflavin was used as a cheap,nontoxic carbon and nitrogen precursor to prepar... Efficient,cost‐effective electrocatalysts for an oxygen reduction reaction(ORR)are currently required for fuel cells.In the present work,riboflavin was used as a cheap,nontoxic carbon and nitrogen precursor to prepare Fe-N-C catalysts via one‐step pyrolysis in the presence of anhydrous iron chloride.Raman spectroscopy indicated that the catalyst containing nitrogen created a great quantity of defects in the carbon structures,while nitrogen adsorption‐desorption isotherms showed that the catalyst was mesoporous.Transmission electron microscopy demonstrated that the Fe-N-C catalyst was composed of very thin,curved and porous graphene layers together with some Fe2O3nanoparticles,and X‐ray diffraction patterns confirmed that the carbon in the catalyst was highly graphitized.X‐ray photoelectron spectroscopy indicated that the active sites for the ORR were primarily composed of graphitic nitrogen,although Fe sites also played an important role.The ORR activity of the Fe-N-C catalyst reached a maximum of4.16mA cm-2,and its chronoamperometric response was found to decrease by only3%after operating for3h at0.66V(vs RHE)in an O2‐saturated0.1mol L-1KOH solution.In contrast,a commercial40wt%Pt/C catalyst with a loading of0.2mgPt cm-2exhibited an activity of4.46mA cm-2and a40%loss of response.The electrochemical performance of this new Fe-N-C catalyst was therefore comparable to that of the Pt/C catalyst while showing significantly better stability. 展开更多
关键词 RIBOFLAVIN pyrolysis Oxygen reduction reaction FECL3 ELECTROCATALYST
下载PDF
Thermodynamic Investigation on the Pyrolysis of 1-Hexene
20
作者 程学礼 赵燕云 +1 位作者 李丽清 李震 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第2期165-172,共8页
The pyrolysis of 1-hexene can act as a prototype of pyrolytic mechanism in petro- leum processing. Details of C-C bond cleavage in the 1-hexene pyrolysis were investigated at the MP2/6-31 I++G^** basis set level. ... The pyrolysis of 1-hexene can act as a prototype of pyrolytic mechanism in petro- leum processing. Details of C-C bond cleavage in the 1-hexene pyrolysis were investigated at the MP2/6-31 I++G^** basis set level. The equilibrium geometries and key thermodynamic parameters such as Gibbs free energies and thermal enthalpies were gained. Our theoretical results show that the entropy effect plays a significant role in dissociative processes. The dissociation of 1-hexene-4-yl radical into C4H6 and C2H5 is not an H-transfer and C-C rupture elementary reaction, but a process involving H-transfer and C-C rupture. 展开更多
关键词 1-HEXENE pyrolysis MP2 reaction mechanism
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部