Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic aci...Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.展开更多
The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of sel...The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of self-incompatibility genotypes of seven Chinese and two Japanese sand pear cultivars using PCR-RFLP analysis and S-RNase sequencing. The Sgenotypes of these cultivars were determined as follows: Huali 1 S1S3, Shounan S1S3, Xizilti S1S4, Qingxiang S3S7, Sanhua S2S7, Huangmi (Imamuranatsu) S1S6, Huali 2 S3S4, Baozhuli S7S33, Cangxixueli S5S15. S-RNase alleles (S1 to S9) in sand pear could be identified effectively by PCR-RFLP analysis.展开更多
Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated t...Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated that content of lignin may be regulated by cinnamoyl CoA reductase(CCR) in various plants. However, the function of CCR in pears remains very limited. In the present study, we isolated a cDNA encoding CCR(PpCCR, GenBank accession No. KF999958) and its promoter(proPpCCR) from Whangkeumbae pear to investigate the function of CCR in lignin biosynthesis. PpCCR-GFP expressed in rice mesophyll protoplast demonstrated that PpCCR-GFP was localized in the cytoplasm, indicating that CCR may function in cytoplasm without localization signals. In transgenic plants carrying PpCCR, we observed higher lignin content compared with that in wild type plants, further suggesting that PpCCR can affect the lignin contents through regulating lignin biosynthesis in Arabidopsis thaliana. More studies in other plants are needed to confirm our conclusion.展开更多
The aim of this article is to study the relationship between biosynthesis of anthocyanin and activities of phenylalanine ammonia lyase (PAL), chalcone ismoerase (CHI) enzymes in Pyrus pyrifolia. Changes in the lev...The aim of this article is to study the relationship between biosynthesis of anthocyanin and activities of phenylalanine ammonia lyase (PAL), chalcone ismoerase (CHI) enzymes in Pyrus pyrifolia. Changes in the level of anthocyanin and the activities of enzymes of anthocyanin biosynthesis including PAL, CHI were studied in the pericarp of Pyrus pyrifolia Aoguan and Mantianhong during the period of pigment formation. Bagging treatment was also carried out to manipulate the synthesis of anthocyanin and the activities of related enzymes during the period of pigment formation. The results demonstrated that the level of anthocyanin of Aoguan was higher than that of Mantianhong. However, the content of anthocyanins has the similar changing trend in Aoguan and Mantianhong, highest anthocyanin concentrations of two varieties appeared in immature fruit and faded toward harvest. Meanwhile, similar changing trends of activities of PAL and CHI were also observed in both varieties. Aoguan has a lower activity of PAL than Mantianhong, whereas activity of CHI in Aoguan was higher than that in Mantianhong. Activity of PAL decreased during the period of pigment formation and was apparently not limiting to color development, whereas CHI activity increased at the same period and was closely related to the synthesis of anthocyanin. The results of bagging treatment showed that bagging treatment inhibited the activity of CHI, as well as the synthesis of anthocyanin, whereas debagging enhanced both the activity of CHI and synthesis of anthocyanin. The activity of CHI in debagging Aoguan pericarp was higher than the untreated Aoguan. However, effect of bagging treatment toward PAL activity was not obvious. Anthocyanin of bagging treated Aoguan decreased toward harvest. The content of anthocyanin of Pyruspyrifolia increased at the beginning of fruit coloration period and decreased toward fruit harvest. Activity of PAL was apparently not limiting to color development, whereas CHI activity was closely related to the synthesis of anthocyanin. Debagging enhanced both the activity of CHI and anthocyanin synthesis. Bagging treatment also proved that degradation of anthocyanin was not induced only by light. Light appeared to have two opposing effects in pears: it is required for anthocyanin synthesis and also for apparently increasing red color loss through increased degradation of anthocyanin.展开更多
Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (...Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.展开更多
Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the train...Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.展开更多
In order to improve the management of nitrogen(N) fertilization in pear orchards, we investigated the effects of application timing on the distribution, storage, and remobilization of N in mature pear trees in a field...In order to improve the management of nitrogen(N) fertilization in pear orchards, we investigated the effects of application timing on the distribution, storage, and remobilization of N in mature pear trees in a field experiment at Jingtai County, Gansu Province, China. Nine trees were selected for the experiment and each received equal aliquots of 83.33 g N in the autumn, spring, and summer, with ^(15)N-labeled(NH_4)_2SO_4 used in one of the aliquots each season. Results showed that the(^(15)NH_4)_2SO_4 applied in the autumn remained in the soil during the winter. In the following spring this N was absorbed and rapidly remobilized into each organ, especially new organs(leaves, fruit and new shoots). The ^(15)N supplied in spring was rapidly transported to developing fruit between the young fruit and fruit enlargement stages. ^(15)N from the summer application of fertilizer was mainly stored in the coarse roots over the winter, then was mobilized to support growth of new organs in spring. In conclusion, for pear trees we recommend that the autumn application of N-fertilizer be soon after fruit harvest in order to increase N stores in fine roots. Spring application should be between full bloom and the young fruit stages to meet the high N demands of developing fruit. Summer application of fertilizer at the fruit enlargement stage does not contemporaneously affect the growth of pears, but increases the N stored in coarse roots, and in turn the amount available for remobilization in spring.展开更多
Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,...Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.展开更多
Glycine-aspartic acid–serine-leucine(GDSL)type lipases/esterases genes play critical roles in plant development and are related to the responses to abiotic and biotic stress.However,little is known about the GDSL fam...Glycine-aspartic acid–serine-leucine(GDSL)type lipases/esterases genes play critical roles in plant development and are related to the responses to abiotic and biotic stress.However,little is known about the GDSL family in pear(Pyrus spp.).Studies have shown GDSL-domain proteins play key roles in suberin deposition.Suberin deposition in the fruit epidermis,also called russeting,is an important defect that negatively affects consumer's appeal in some fruit species,such as pear,apple and grapevine.Fruit russeting is mainly associated with cuticle microcracking and suberin accumulation in the inner part of the epidermal cell walls.To gain insight into the role of the GDSL gene family in suberin deposition and russet development in pear,we performed a genome-wide characterization of the GDSL family,including their identification,chromosomal localization,phylogenetic relationships,and expression patterns,in different tissues/organs in pear.One hundred and thirteen GDSL-type lipases/esterases genes were identified in the pear genome,and a phylogenetic analysis revealed that GDSL family can be classified into four distinct groups.Thirty GDSL genes were co-expressed with five homolog pear genes of three well-known suberin biosynthesis Arabidopsis genes(AtGPAT5,AtASFT,and AtCYP86B1)in the transcriptional co-expression network during pear fruit development.Among the 30 co-expressed GDSL genes,twelve genes were further analyzed by quantitative Real-time PCR,and the results showed the expression levels of the 12 genes were different between the russet exocarp and green exocarp of sand pear at different fruit development stages.Our study provides a detailed overview of the GDSL gene family and lays the foundation for future functional characterization of GDSL genes in P.bretschneideri.展开更多
The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Blac...The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.展开更多
Ethylene is the main factor controlling fruit ripening of pear(Pyrus ussuriensis).Ethylene production rate is negatively correlated with fruit shelf life;therefore,it is important to decrease the ethylene levels for o...Ethylene is the main factor controlling fruit ripening of pear(Pyrus ussuriensis).Ethylene production rate is negatively correlated with fruit shelf life;therefore,it is important to decrease the ethylene levels for optimal fruit storage.Here,we observed that blue light treatment could inhibit ethylene production and promote the expression of ELONGATED HYPOCOTYL 5(PuHY5),a basic leucine zipper domain(bZIP)transcription factor.The following studies showed that PuHY5 could bind to the promoter of ACC synthase 1(PuACS1),a rate-limiting enzyme in ethylene biosynthesis,and inhibit its expression.For pears in which Pu HY5 was silenced,the ethylene production and PuACS1 expression were much higher than those in the control fruit.These results demonstrated that blue light inhibited ethylene production through the induction of Pu HY5 in pear.Our finding provides a new method for prolonging fruit shelf life.展开更多
基金supported by the National Natural Science Foundation of China(32272654)the Natural Science Foundation of Hebei Province China(C2023204016)+2 种基金the Hebei Province Introduced Overseas-Scholar Fund China(C20220361)the S&T Program of Hebei China(20326330D)the Hebei Province Outstanding Youth Fund China(2016,2019)。
文摘Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.
基金supported in part by Natural Science Foundation of JiangxiAgricultural University, China (1878).
文摘The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of self-incompatibility genotypes of seven Chinese and two Japanese sand pear cultivars using PCR-RFLP analysis and S-RNase sequencing. The Sgenotypes of these cultivars were determined as follows: Huali 1 S1S3, Shounan S1S3, Xizilti S1S4, Qingxiang S3S7, Sanhua S2S7, Huangmi (Imamuranatsu) S1S6, Huali 2 S3S4, Baozhuli S7S33, Cangxixueli S5S15. S-RNase alleles (S1 to S9) in sand pear could be identified effectively by PCR-RFLP analysis.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-2917)Hubei Innovation Center of Agricultural Science and Technology(2011-620-005003)
文摘Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated that content of lignin may be regulated by cinnamoyl CoA reductase(CCR) in various plants. However, the function of CCR in pears remains very limited. In the present study, we isolated a cDNA encoding CCR(PpCCR, GenBank accession No. KF999958) and its promoter(proPpCCR) from Whangkeumbae pear to investigate the function of CCR in lignin biosynthesis. PpCCR-GFP expressed in rice mesophyll protoplast demonstrated that PpCCR-GFP was localized in the cytoplasm, indicating that CCR may function in cytoplasm without localization signals. In transgenic plants carrying PpCCR, we observed higher lignin content compared with that in wild type plants, further suggesting that PpCCR can affect the lignin contents through regulating lignin biosynthesis in Arabidopsis thaliana. More studies in other plants are needed to confirm our conclusion.
基金supported by the National 863 Program of China (2006AA100108)
文摘The aim of this article is to study the relationship between biosynthesis of anthocyanin and activities of phenylalanine ammonia lyase (PAL), chalcone ismoerase (CHI) enzymes in Pyrus pyrifolia. Changes in the level of anthocyanin and the activities of enzymes of anthocyanin biosynthesis including PAL, CHI were studied in the pericarp of Pyrus pyrifolia Aoguan and Mantianhong during the period of pigment formation. Bagging treatment was also carried out to manipulate the synthesis of anthocyanin and the activities of related enzymes during the period of pigment formation. The results demonstrated that the level of anthocyanin of Aoguan was higher than that of Mantianhong. However, the content of anthocyanins has the similar changing trend in Aoguan and Mantianhong, highest anthocyanin concentrations of two varieties appeared in immature fruit and faded toward harvest. Meanwhile, similar changing trends of activities of PAL and CHI were also observed in both varieties. Aoguan has a lower activity of PAL than Mantianhong, whereas activity of CHI in Aoguan was higher than that in Mantianhong. Activity of PAL decreased during the period of pigment formation and was apparently not limiting to color development, whereas CHI activity increased at the same period and was closely related to the synthesis of anthocyanin. The results of bagging treatment showed that bagging treatment inhibited the activity of CHI, as well as the synthesis of anthocyanin, whereas debagging enhanced both the activity of CHI and synthesis of anthocyanin. The activity of CHI in debagging Aoguan pericarp was higher than the untreated Aoguan. However, effect of bagging treatment toward PAL activity was not obvious. Anthocyanin of bagging treated Aoguan decreased toward harvest. The content of anthocyanin of Pyruspyrifolia increased at the beginning of fruit coloration period and decreased toward fruit harvest. Activity of PAL was apparently not limiting to color development, whereas CHI activity was closely related to the synthesis of anthocyanin. Debagging enhanced both the activity of CHI and anthocyanin synthesis. Bagging treatment also proved that degradation of anthocyanin was not induced only by light. Light appeared to have two opposing effects in pears: it is required for anthocyanin synthesis and also for apparently increasing red color loss through increased degradation of anthocyanin.
基金supported by the China Agriculture Research System (Grant No.CARS-28-14)。
文摘Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.
基金supported by the National Key Research and Development Program (Grant No.2022YFD1200503)Jiangsu Agricultural Science and Technology Innovation Fund [Grant No.CX(22)3043]+1 种基金the Earmarked Fund for China Agriculture Research System (Grant No.CARS-28)the Earmarked Fund for Jiangsu Agricultural Industry Technology System (Grant No.JATS [2022]454)。
文摘Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.
基金funded by the earmarked fund of China Agriculture Research System(CARS-29-10)。
文摘In order to improve the management of nitrogen(N) fertilization in pear orchards, we investigated the effects of application timing on the distribution, storage, and remobilization of N in mature pear trees in a field experiment at Jingtai County, Gansu Province, China. Nine trees were selected for the experiment and each received equal aliquots of 83.33 g N in the autumn, spring, and summer, with ^(15)N-labeled(NH_4)_2SO_4 used in one of the aliquots each season. Results showed that the(^(15)NH_4)_2SO_4 applied in the autumn remained in the soil during the winter. In the following spring this N was absorbed and rapidly remobilized into each organ, especially new organs(leaves, fruit and new shoots). The ^(15)N supplied in spring was rapidly transported to developing fruit between the young fruit and fruit enlargement stages. ^(15)N from the summer application of fertilizer was mainly stored in the coarse roots over the winter, then was mobilized to support growth of new organs in spring. In conclusion, for pear trees we recommend that the autumn application of N-fertilizer be soon after fruit harvest in order to increase N stores in fine roots. Spring application should be between full bloom and the young fruit stages to meet the high N demands of developing fruit. Summer application of fertilizer at the fruit enlargement stage does not contemporaneously affect the growth of pears, but increases the N stored in coarse roots, and in turn the amount available for remobilization in spring.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.KYYJ202116)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2020]the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.
基金financially supported by National Natural Science Foundation of China(Grant No.31272140)。
文摘Glycine-aspartic acid–serine-leucine(GDSL)type lipases/esterases genes play critical roles in plant development and are related to the responses to abiotic and biotic stress.However,little is known about the GDSL family in pear(Pyrus spp.).Studies have shown GDSL-domain proteins play key roles in suberin deposition.Suberin deposition in the fruit epidermis,also called russeting,is an important defect that negatively affects consumer's appeal in some fruit species,such as pear,apple and grapevine.Fruit russeting is mainly associated with cuticle microcracking and suberin accumulation in the inner part of the epidermal cell walls.To gain insight into the role of the GDSL gene family in suberin deposition and russet development in pear,we performed a genome-wide characterization of the GDSL family,including their identification,chromosomal localization,phylogenetic relationships,and expression patterns,in different tissues/organs in pear.One hundred and thirteen GDSL-type lipases/esterases genes were identified in the pear genome,and a phylogenetic analysis revealed that GDSL family can be classified into four distinct groups.Thirty GDSL genes were co-expressed with five homolog pear genes of three well-known suberin biosynthesis Arabidopsis genes(AtGPAT5,AtASFT,and AtCYP86B1)in the transcriptional co-expression network during pear fruit development.Among the 30 co-expressed GDSL genes,twelve genes were further analyzed by quantitative Real-time PCR,and the results showed the expression levels of the 12 genes were different between the russet exocarp and green exocarp of sand pear at different fruit development stages.Our study provides a detailed overview of the GDSL gene family and lays the foundation for future functional characterization of GDSL genes in P.bretschneideri.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant Nos.SCX(22)3215],Fundamental Research Funds for the Central Universities(Grant No.JCQY201901)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.
基金supported by the National Natural Science Foundation of China(Grant Nos.32125034 and 31801834)。
文摘Ethylene is the main factor controlling fruit ripening of pear(Pyrus ussuriensis).Ethylene production rate is negatively correlated with fruit shelf life;therefore,it is important to decrease the ethylene levels for optimal fruit storage.Here,we observed that blue light treatment could inhibit ethylene production and promote the expression of ELONGATED HYPOCOTYL 5(PuHY5),a basic leucine zipper domain(bZIP)transcription factor.The following studies showed that PuHY5 could bind to the promoter of ACC synthase 1(PuACS1),a rate-limiting enzyme in ethylene biosynthesis,and inhibit its expression.For pears in which Pu HY5 was silenced,the ethylene production and PuACS1 expression were much higher than those in the control fruit.These results demonstrated that blue light inhibited ethylene production through the induction of Pu HY5 in pear.Our finding provides a new method for prolonging fruit shelf life.