The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean ...The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.展开更多
针对Pythagorean模糊信息的决策问题,构建广义Pythagorean模糊信息加权有序加权平均(PF-GWOWA)算子.首先,提出PF-GWOWA算子,并证明Pythagorean模糊广义加权平均(PF-GWA)算子、Pythagorean模糊加权有序加权平均(PF-WOWA)算子与Pythagorea...针对Pythagorean模糊信息的决策问题,构建广义Pythagorean模糊信息加权有序加权平均(PF-GWOWA)算子.首先,提出PF-GWOWA算子,并证明Pythagorean模糊广义加权平均(PF-GWA)算子、Pythagorean模糊加权有序加权平均(PF-WOWA)算子与Pythagorean模糊加权平均(PF-WA)算子均为PF-GWOWA算子的特例;其次,根据G WO WA算子属性综合权重计算模型,利用P F-G WO WA算子对信息进行集结;最后,通过算例分析和传统方法对比,说明本文提出方法的合理性与有效性.展开更多
Prime integers and their generalizations play important roles in protocols for secure transmission of information via open channels of telecommunication networks. Generation of multidigit large primes in the design st...Prime integers and their generalizations play important roles in protocols for secure transmission of information via open channels of telecommunication networks. Generation of multidigit large primes in the design stage of a cryptographic system is a formidable task. Fermat primality checking is one of the simplest of all tests. Unfortunately, there are composite integers (called Carmichael numbers) that are not detectable by the Fermat test. In this paper we consider modular arithmetic based on complex integers;and provide several tests that verify the primality of real integers. Although the new tests detect most Carmichael numbers, there are a small percentage of them that escape these tests.展开更多
本文考虑决策者在实际问题中存有的多种决策心理,针对毕达哥拉斯模糊偏好下考虑双边主体损失规避和参照依赖心理行为的双边匹配问题提出一种决策方法。对于双边主体给出的毕达哥拉斯模糊偏好信息,依据TODIM(Tomada de Decisao Interativ...本文考虑决策者在实际问题中存有的多种决策心理,针对毕达哥拉斯模糊偏好下考虑双边主体损失规避和参照依赖心理行为的双边匹配问题提出一种决策方法。对于双边主体给出的毕达哥拉斯模糊偏好信息,依据TODIM(Tomada de Decisao Interativa Multicritério)思想获得双边主体相较于另一边匹配主体的总体优势度,进而构建双边主体的满意度矩阵;而后,在考虑双边主体一对一的数量匹配约束下,以实现双边主体满意度最大化为决策目标,建立多目标双边匹配决策模型;最后,通过线性加权法进一步将其转化为单目标双边匹配模型,通过模型求解获得最优双边匹配方案;一个实际供应链管理系统软件的交易匹配算例验证本方法的可行性和有效性。展开更多
文摘The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.
文摘针对Pythagorean模糊信息的决策问题,构建广义Pythagorean模糊信息加权有序加权平均(PF-GWOWA)算子.首先,提出PF-GWOWA算子,并证明Pythagorean模糊广义加权平均(PF-GWA)算子、Pythagorean模糊加权有序加权平均(PF-WOWA)算子与Pythagorean模糊加权平均(PF-WA)算子均为PF-GWOWA算子的特例;其次,根据G WO WA算子属性综合权重计算模型,利用P F-G WO WA算子对信息进行集结;最后,通过算例分析和传统方法对比,说明本文提出方法的合理性与有效性.
文摘Prime integers and their generalizations play important roles in protocols for secure transmission of information via open channels of telecommunication networks. Generation of multidigit large primes in the design stage of a cryptographic system is a formidable task. Fermat primality checking is one of the simplest of all tests. Unfortunately, there are composite integers (called Carmichael numbers) that are not detectable by the Fermat test. In this paper we consider modular arithmetic based on complex integers;and provide several tests that verify the primality of real integers. Although the new tests detect most Carmichael numbers, there are a small percentage of them that escape these tests.
文摘本文考虑决策者在实际问题中存有的多种决策心理,针对毕达哥拉斯模糊偏好下考虑双边主体损失规避和参照依赖心理行为的双边匹配问题提出一种决策方法。对于双边主体给出的毕达哥拉斯模糊偏好信息,依据TODIM(Tomada de Decisao Interativa Multicritério)思想获得双边主体相较于另一边匹配主体的总体优势度,进而构建双边主体的满意度矩阵;而后,在考虑双边主体一对一的数量匹配约束下,以实现双边主体满意度最大化为决策目标,建立多目标双边匹配决策模型;最后,通过线性加权法进一步将其转化为单目标双边匹配模型,通过模型求解获得最优双边匹配方案;一个实际供应链管理系统软件的交易匹配算例验证本方法的可行性和有效性。