As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde...As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
Cybercrime is projected to cost a whopping $23.8 Trillion by 2027. This is essentially because there’s no computer network that’s not vulnerable. Fool-proof cybersecurity of personal data in a connected computer is ...Cybercrime is projected to cost a whopping $23.8 Trillion by 2027. This is essentially because there’s no computer network that’s not vulnerable. Fool-proof cybersecurity of personal data in a connected computer is considered practically impossible. The advent of quantum computers (QC) will worsen cybersecurity. QC will be a boon for data-intensive industries by drastically reducing the computing time from years to minutes. But QC will render our current cryptography vulnerable to quantum attacks, breaking nearly all modern cryptographic systems. Before QCs with sufficient qubits arrive, we must be ready with quantum-safe strategies to protect our ICT infrastructures. Post-quantum cryptography (PQC) is being aggressively pursued worldwide as a defence from the potential Q-day threat. NIST (National Institute of Standards and Technology), in a rigorous process, tested 82 PQC schemes, 80 of which failed after the final round in 2022. Recently the remaining two PQCs were also cracked by a Swedish and a French team of cryptographers, placing NIST’s PQC standardization process in serious jeopardy. With all the NIST-evaluated PQCs failing, there’s an urgent need to explore alternate strategies. Although cybersecurity heavily relies on cryptography, recent evidence indicates that it can indeed transcend beyond encryption using Zero Vulnerability Computing (ZVC) technology. ZVC is an encryption-agnostic absolute zero trust (AZT) approach that can potentially render computers quantum resistant by banning all third-party permissions, a root cause of most vulnerabilities. Unachievable in legacy systems, AZT is pursued by an experienced consortium of European partners to build compact, solid-state devices that are robust, resilient, energy-efficient, and with zero attack surface, rendering them resistant to malware and future Q-Day threats.展开更多
目的:探讨彝药黑根治疗类风湿性关节炎潜在的作用机制以及主要活性成分。方法:运用UPLC-Q-Orbitrap HRMS及GC-MS技术分析黑根的化学成分,利用Swiss Target进行活性成分的靶点筛选和预测,同时在Genecard、OMIM、Dis Ge NET等数据库中筛...目的:探讨彝药黑根治疗类风湿性关节炎潜在的作用机制以及主要活性成分。方法:运用UPLC-Q-Orbitrap HRMS及GC-MS技术分析黑根的化学成分,利用Swiss Target进行活性成分的靶点筛选和预测,同时在Genecard、OMIM、Dis Ge NET等数据库中筛选类风湿性关节炎相关靶点,利用Cytoscape3.9.0软件构建“活性成分-靶点”网络模型,运用String数据分析平台进行蛋白互作网络分析,并且利用基因富集分析在线工具对核心靶点进行GO富集分析和KEGG通路分析,最后使用分子对接对网络药理学内容进行初步验证。结果:共鉴定出黑根化学成分78个,筛选后活性成分50个,237个潜在作用靶点与类风湿性关节炎相关,包括STAT3、AKT1、EGFR等关键靶点。通路富集分析PI3K-Akt通路、JAK-STAT等信号通路可能是黑根发挥抗类风湿性关节炎的主要途径。通过分子对接技术得出主要活性成分(异绿原酸B、异绿原酸C)与关键靶点有较好结合力。结论:研究初步表明黑根通过多成分、多靶点、多途径治疗类风湿性关节炎的作用,为后续黑根物质基础研究提供了理论依据。展开更多
The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by...The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.展开更多
In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new exp...In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.展开更多
基金Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management(Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China(Grant No.11802160).
文摘As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
文摘Cybercrime is projected to cost a whopping $23.8 Trillion by 2027. This is essentially because there’s no computer network that’s not vulnerable. Fool-proof cybersecurity of personal data in a connected computer is considered practically impossible. The advent of quantum computers (QC) will worsen cybersecurity. QC will be a boon for data-intensive industries by drastically reducing the computing time from years to minutes. But QC will render our current cryptography vulnerable to quantum attacks, breaking nearly all modern cryptographic systems. Before QCs with sufficient qubits arrive, we must be ready with quantum-safe strategies to protect our ICT infrastructures. Post-quantum cryptography (PQC) is being aggressively pursued worldwide as a defence from the potential Q-day threat. NIST (National Institute of Standards and Technology), in a rigorous process, tested 82 PQC schemes, 80 of which failed after the final round in 2022. Recently the remaining two PQCs were also cracked by a Swedish and a French team of cryptographers, placing NIST’s PQC standardization process in serious jeopardy. With all the NIST-evaluated PQCs failing, there’s an urgent need to explore alternate strategies. Although cybersecurity heavily relies on cryptography, recent evidence indicates that it can indeed transcend beyond encryption using Zero Vulnerability Computing (ZVC) technology. ZVC is an encryption-agnostic absolute zero trust (AZT) approach that can potentially render computers quantum resistant by banning all third-party permissions, a root cause of most vulnerabilities. Unachievable in legacy systems, AZT is pursued by an experienced consortium of European partners to build compact, solid-state devices that are robust, resilient, energy-efficient, and with zero attack surface, rendering them resistant to malware and future Q-Day threats.
文摘目的:探讨彝药黑根治疗类风湿性关节炎潜在的作用机制以及主要活性成分。方法:运用UPLC-Q-Orbitrap HRMS及GC-MS技术分析黑根的化学成分,利用Swiss Target进行活性成分的靶点筛选和预测,同时在Genecard、OMIM、Dis Ge NET等数据库中筛选类风湿性关节炎相关靶点,利用Cytoscape3.9.0软件构建“活性成分-靶点”网络模型,运用String数据分析平台进行蛋白互作网络分析,并且利用基因富集分析在线工具对核心靶点进行GO富集分析和KEGG通路分析,最后使用分子对接对网络药理学内容进行初步验证。结果:共鉴定出黑根化学成分78个,筛选后活性成分50个,237个潜在作用靶点与类风湿性关节炎相关,包括STAT3、AKT1、EGFR等关键靶点。通路富集分析PI3K-Akt通路、JAK-STAT等信号通路可能是黑根发挥抗类风湿性关节炎的主要途径。通过分子对接技术得出主要活性成分(异绿原酸B、异绿原酸C)与关键靶点有较好结合力。结论:研究初步表明黑根通过多成分、多靶点、多途径治疗类风湿性关节炎的作用,为后续黑根物质基础研究提供了理论依据。
基金supported by the National Natural Science Foundation of China(Grant No.41174117 and 41474109)the National Key Basic Research Development Program of China(Grant No.2013CB228606)
文摘The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.
基金sponsored by the National Nature Science Foundation of China(Nos.41174114 and 41274128)
文摘In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.
基金supported by the National Key Research and Development Program of China(No.2018YFA0707300)the National Natural Science Foundation of China(Nos.51901151,51905372,52275362,52171122)China Postdoctoral Science Foundation(Nos.2020M680918,2021T140503)。