This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleads are attached by focused-ion beam deposition. The current-voltage (I - V) characteristics...This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleads are attached by focused-ion beam deposition. The current-voltage (I - V) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the I - V curves and oscillation peaks in the differential conductance (dI/dV - V) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.展开更多
This paper reports that the nickel-silicone rubber composites with enhanced piezoresistivity were synthesized with much reduced nickel concentration. A large piezosensitivity of 0.716/kPa and a gauge factor of 600 hav...This paper reports that the nickel-silicone rubber composites with enhanced piezoresistivity were synthesized with much reduced nickel concentration. A large piezosensitivity of 0.716/kPa and a gauge factor of 600 have been obtained for a composite sample with filler-polymer ratio of 2.7:1 by weight. Measurements of resistance as a function of uniaxial force reveal that the piezoresistance arises predominantly from the internal heterogeneity of the material and the effect of geometrical changes of samples under pressure is negleetably small. The nonlinear current-voltage characteristic of the composite depends strongly on the filler content, the initial compression and the electrical current flowing in the sample. Ohmic behaviour has been observed only in the highly compressed samples. The breakdown strength decreases with increasing filler content of the composite. Both I - V and R - f characteristics indicates that the resistivity of the composites decreases with electrical field, suggesting that the composite may also be used to make voltage sensitive resistors for protecting circuits. All the experimental results favour a quantum tunnelling mechanism of conductivity. It finds that the concept 'negative resistance', often used to describe the phenomena that current decreases with increasing voltage, is not appropriate and should be avoided.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10604038)Program for New Century Excellent Talents in University,China (Grant No NCE72007)
文摘This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleads are attached by focused-ion beam deposition. The current-voltage (I - V) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the I - V curves and oscillation peaks in the differential conductance (dI/dV - V) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.
基金supported by National Natural Science Foundation of China (Grant No 60571063)partially sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘This paper reports that the nickel-silicone rubber composites with enhanced piezoresistivity were synthesized with much reduced nickel concentration. A large piezosensitivity of 0.716/kPa and a gauge factor of 600 have been obtained for a composite sample with filler-polymer ratio of 2.7:1 by weight. Measurements of resistance as a function of uniaxial force reveal that the piezoresistance arises predominantly from the internal heterogeneity of the material and the effect of geometrical changes of samples under pressure is negleetably small. The nonlinear current-voltage characteristic of the composite depends strongly on the filler content, the initial compression and the electrical current flowing in the sample. Ohmic behaviour has been observed only in the highly compressed samples. The breakdown strength decreases with increasing filler content of the composite. Both I - V and R - f characteristics indicates that the resistivity of the composites decreases with electrical field, suggesting that the composite may also be used to make voltage sensitive resistors for protecting circuits. All the experimental results favour a quantum tunnelling mechanism of conductivity. It finds that the concept 'negative resistance', often used to describe the phenomena that current decreases with increasing voltage, is not appropriate and should be avoided.