期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a new method for RMR and Q classification method to optimize support system in tunneling
1
作者 Asghar RAHMATI Lohrasb FARAMARZI Manouchehr SANEI 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第4期448-455,共8页
Rock mass classification system is very suitable for various engineering design and stability analysis. JH classification method is confirmed by Japan Highway Public Corporation that this method can figure out either ... Rock mass classification system is very suitable for various engineering design and stability analysis. JH classification method is confirmed by Japan Highway Public Corporation that this method can figure out either strength or deformability of rock mass, further appropriating the amount of rock bolts, thickness ofshotcrete, and size of pitch of steel ribs just after the blasting procedure. Based on these advantages of JH method, in this study, according to data of five deep and long tunnels in Iran, two equations for estimating the value of JH method from Q and RMR classification systems were developed. These equations as a new method were able to optimize the support system for Q and RMR classification systems. From JH classification and its application in these case studies, it is pointed out that the JH method for the design of support systems in underground working is more reliable than the Q and RMR classification systems. 展开更多
关键词 JH classification q and RMR classification new method
原文传递
Empirical approach for reliability evaluation of tunnel excavation stability using the Q rock mass classification system 被引量:3
2
作者 Hui Lu Marte Gutierrez Eunhye Kim 《Underground Space》 SCIE EI 2022年第5期862-881,共20页
The critical strain concept has been widely used in analytical or numerical approaches to evaluate the stability of underground excavations.Analytical,empirical,and numerical procedures are usually used to determine t... The critical strain concept has been widely used in analytical or numerical approaches to evaluate the stability of underground excavations.Analytical,empirical,and numerical procedures are usually used to determine the critical strain values.This paper presents a reliability assessment procedure for evaluating excavation stability using the empirical approach based on the rock mass classification Q and the first order reliability method(FORM).In contrast to deterministic critical strain values,a probabilistic critical strain,which considers uncertainties in rock mass parameters,was incorporated in a limit state function for reliability analysis.Using the rock mass classification Q,the empirically estimated tunnel stain was included in the limit state function.The critical strain and estimated tunnel strain were probabilistically characterized based on the rock mass classification Q-derived rock mass properties.Monte Carlo simulations were also conducted for comparing the reliability analysis results with those derived from the FORM algorithm.A highway tunnel case study was used to demonstrate the reliability assessment procedure.The effects of the input ground parameter correlations,probability distributions,and coefficients of variation on tunnel reliability were investigated.Results show that uncorrelated and normally distributed input parameters(intact rock strength and elastic modulus)have generated more conservative reliability.The reliability analysis results also show that the tunnel had relatively high reliability(reliability index of 2.78 and probability of failure of 0.27%),indicating the tunnel is not expected to experience instability after excavation.The tunnel excavation stability was assessed using analytical and numerical approaches for comparison.The results were consistent with the reliability analysis using the FORM algorithm’s Q-based empirical method. 展开更多
关键词 Reliability analysis TUNNEL Critical strain Rock mass classification q First order reliability method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部