The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence...The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.展开更多
This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and up...This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.展开更多
文摘The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.
基金A.R.A.Alanzi would like to thank the Deanship of Scientific Research at Majmaah University for financial support and encouragement.
文摘This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.