期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Soil carbon dioxide fluxes of a typical broad-leaved/Korean pine mixed forest in Changbai Mountain, China 被引量:3
1
作者 王琛瑞 吴劼 +1 位作者 梁战备 黄国宏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第4期268-272,共5页
The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static clos... The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40. 展开更多
关键词 Soil CO2 flux Broad-leaved/Korean pine mixed forest q10 value Changbai Mountain
下载PDF
Effects of Enhanced UV-B Radiation on Soil Respiration of Barley Field 被引量:1
2
作者 张富存 江晓东 《Meteorological and Environmental Research》 CAS 2010年第6期39-41,共3页
[Objective] The aim was to investigate the changing characteristics of soil respiration in clear day with enhanced UV-B radiation and in cloudy day without external UV-B radiation forcing.[Methods] Based on measuring ... [Objective] The aim was to investigate the changing characteristics of soil respiration in clear day with enhanced UV-B radiation and in cloudy day without external UV-B radiation forcing.[Methods] Based on measuring soil respiration rate of barley field at jointing stage in typical clear day and cloudy day by means of Li-8100,the effects of enhanced UV-B radiation by 20% on soil respiration rate were studied. [Results] The results showed that enhanced UV-B radiation inhibited soil respiration of barley field obviously. In clear day,the average soil respiration rate of normal barley field(B) was 1.02 μmol/(m2·s) higher than that of barley field with the enhanced UV-B radiation by 20%(BU) . For cloudy day,the average soil respiration rate of B treatment was 0.71 μmol/(m2·s) lower than BU treatment without external UV-B radiation forcing. In clear day,UV-B radiation rise resulted into the decrease of Q10 value of soil respiration in barley field,but there was an increase in cloudy day without external UV-B radiation forcing,leading to various changes of soil respiration rate. [Conclusions] Supplemental UV-B radiation could inhibit soil respiration rate of barley filed significantly,thus affected the increase of crop yield. 展开更多
关键词 UV-B Barley field Soil respiration q10 value China
下载PDF
Non-growing season soil CO_2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains,Northwest China 被引量:1
3
作者 ZongQiang CHANG XiaoQing LIU +4 位作者 Qi FENG ZongXi CHE HaiYang XI YongHong SU JianHua SI 《Journal of Arid Land》 SCIE CSCD 2013年第4期488-499,共12页
Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these syst... Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these systems' annual carbon budgets.However,little information exists on soil CO2 efflux during the non-growing season from alpine ecosystems.Therefore,comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of estimating ecosystem carbon budgets,as well as predicting the response of soil CO2 efflux to climate changes.In this study,we measured soil CO2 efflux and its spatial and temporal changes for different altitudes during the non-growing season in an alpine meadow located in the Qilian Mountains,Northwest China.Field experiments on the soil CO2 efflux of alpine meadow from the Qilian Mountains were conducted along an elevation gradient from October 2010 to April 2011.We measured the soil CO2 efflux,and analyzed the effects of soil water content and soil temperature on this measure.The results show that soil CO2 efflux gradually decreased along the elevation gradient during the non-growing season.The daily variation of soil CO2 efflux appeared as a single-peak curve.The soil CO2 efflux was low at night,with the lowest value occurring between 02:00-06:00.Then,values started to rise rapidly between 07:00-08:30,and then descend again between 16:00-18:30.The peak soil CO2 efflux appeared from 11:00 to 16:00.The soil CO2 efflux values gradually decreased from October to February of the next year and started to increase in March.Non-growing season Q10 (the multiplier to the respiration rate for a 10℃ increase in temperature) was increased with raising altitude and average Q10 of the Qilian Mountains was generally higher than the average growing season Q10 of the Heihe River Basin.Seasonally,non-growing season soil CO2 efflux was relatively high in October and early spring and low in the winter.The soil CO2 efflux was positively correlated with soil temperature and soil water content.Our results indicate that in alpine ecosystems,soil CO2 efflux continues throughout the non-growing season,and soil respiration is an important component of annual soil CO2 efflux. 展开更多
关键词 non-growing season soil CO2 efflux spatial and temporal variation alpine meadow q10 values Qilian Mountains
下载PDF
Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes 被引量:24
4
作者 Shiping Chen Guanghui Lin +1 位作者 Jianhui Huang Mao He 《Journal of Plant Ecology》 SCIE 2008年第4期237-246,共10页
Aims Precipitation pulses and different land use practices(such as grazing)play important roles in regulating soil respiration and carbon balance of semiarid steppe ecosystems in Inner Mongolia.However,the interactive... Aims Precipitation pulses and different land use practices(such as grazing)play important roles in regulating soil respiration and carbon balance of semiarid steppe ecosystems in Inner Mongolia.However,the interactive effects of grazing and rain event magnitude on soil respiration of steppe ecosystems are still unknown.We conducted a manipulative experiment with simulated precipitation pulses in Inner Mongolia steppe to study the possible responses of soil respiration to different precipitation pulse sizes and to examine how grazing may affect the responses of soil respiration to precipitation pulses.Methods Six water treatments with different precipitation pulse sizes(0,5,10,25,50 and 100 mm)were conducted in the ungrazed and grazed sites,respectively.Variation patterns of soil respiration of each treatment were determined continuously after the water addition treatments.Important Findings Rapid and substantial increases in soil respiration occurred 1 day after the water treatments in both sites,and the magnitude and duration of the increase in soil respiration depended on pulse size.Significantly positive relationships between the soil respiration and soil moisture in both sites suggested that soil moisture was the most important factor responsible for soil respiration rate during rain pulse events.The ungrazed site maintained significantly higher soil moisture for a longer time,which was the reason that the soil respiration in the ungrazed site was maintained relatively higher rate and longer period than that in the grazed site after a rain event.The significant exponential relationship between soil temperature and soil respiration was found only in the plots with the high water addition treatments(50 and 100 mm).Lower capacity of soil water holding and lower temperature sensitivity of soil respiration in the grazed site indicated that degraded steppe due to grazing might release less CO_(2) to the atmosphere through soil respiration under future precipitation and temperature scenarios. 展开更多
关键词 soil CO_(2)efflux degraded steppe precipitation pulse size q10 value
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部