The paper proposed an improved Ordered Successive Interference Cancellation(OSIC) detection scheme for V-BLAST systems with square/rectangular Quadrature Amplitude Modulation(QAM) modulation.It utilizes an equivalent ...The paper proposed an improved Ordered Successive Interference Cancellation(OSIC) detection scheme for V-BLAST systems with square/rectangular Quadrature Amplitude Modulation(QAM) modulation.It utilizes an equivalent real-valued vector expression of relationship between transmit signals and received signals,exploits the constellation's product-form structure and can eventually make the order,in which components of the transmit signals vector are extracted,more "optimal" in some sense.Thereby,it can offer an improved error probability as compared to the conventional OSIC detection scheme.In addition,the paper also proposes an efficient projection al-gorithm to calculate nulling vectors in a simple recursive fashion in order to avoid the vast increase of complexity,which is due to the fact that the original complex N -dimensional data vector and M×N channel matrix are transformed into a real 2N -dimensional data vector and a real 2M ×2N channel matrix respectively.A scrutinous complexity analysis shows that the complexity increases by only 33% as compared to the conventional scheme.展开更多
By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km stan...By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km standard single mode fiber (SSMF) transmission in the C- and L-bands with 25-GHz channel spacing. 368 optical channels with bandwidth spacing of 25 GHz are generated from 16 external cavity laser sources. After 160-km SSMF transmission, all tested bit error rate (BER) are under 3.8×10^-3, which can be recovered by 7% FEC threshold. Within each channel, we achieve the spectral efficiency of 6.85 bit/s/Hz in C/L band.展开更多
Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding perfor...Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding performance. Furthermore, bit-interleaved in-phase and quadrature phase (I-Q) Turbo coded modulation scheme are designed similarly with I-Q trellis coded modulation (TCM). Through performance evaluation and analysis, it can be seen that the novel mapping rule outperforms traditional one and the I-Q Turbo coded modulation can not achieve good performance as expected. Therefore, there is not obvious advantage in using I-Q method in bit-interleaved Turbo coded modulation.展开更多
Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found ...Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found as the key techniques for choosing a label mapping. Based on this discovery, a novel mapping design criteflon is proposed and two label mappings are searched according to it. Simulation results show that the performance of BICM-ID using the novel mappings is better than the former ones. The extrinsic information transfer (EXIT) chart is introduced and it is used to evaluate the proposed mapping design criteria.展开更多
In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) e...In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.展开更多
Mapping design criteria of bit-interleaved coded modulation with iterative decoding (BICM-ID) with square 16QAM are analyzed. Three of the existing criteria are analyzed and compared with each other. Through the compa...Mapping design criteria of bit-interleaved coded modulation with iterative decoding (BICM-ID) with square 16QAM are analyzed. Three of the existing criteria are analyzed and compared with each other. Through the comparison, two main characters of the mapping design criteria are found. They are the harmonic mean of the minimum squared Euclidean distance and the average of Hamming distances with the nearest Euclidean distance. Based on these two characters, a novel mapping design criterion is proposed and a label mapping named mixed mapping is searched according to it. Simulation results show that mixed mapping performs better than the other mappings in BICM-ID system.展开更多
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM ...The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.展开更多
The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Persona...The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Personal Communications Systems). This paper investigated the combination of turbo codes with Unequal Error Protection (UEP) and 16-QAM modulation for EVRC codec of Rate 1 to get power and bandwidth efficient coding scheme. The results show that the UEP system outperforms the Equal Error Protection (EEP) one by 1.45 dB at BER of 10 -5.展开更多
A bandwidth-exchange cooperation algorithm based on the Nash bargaining solution (NBS) is proposed to encourage the selfish users to participate with more cooperation so as to improve the users' energy efficiency. ...A bandwidth-exchange cooperation algorithm based on the Nash bargaining solution (NBS) is proposed to encourage the selfish users to participate with more cooperation so as to improve the users' energy efficiency. As a result, two key problems, i.e. , when to cooperate and how to cooperate, are solved. For the first problem, a proposed cooperation condition that can decide when to cooperate and guarantee users' energy efficiency achieved through cooperation is not lower than that achieved without cooperation. For the second problem, the cooperation bandwidth allocations (CBAs) based on the NBS solve the problem how to cooperate when cooperation takes place. Simulation results show that, as the modulation order of quadrature amplitude modulation (QAM) increases, the cooperation between both users only occurs with a large signal-to-noise ratio (SNR). Meanwhile, the energy efficiency decreases as the modulation order increases. Despite all this, the proposed algorithm can obviously improve the energy efficiency measured in bits-per-Joule compared with non-cooperation.展开更多
With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz commun...With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz communications a step closer to real scenario application,solving high data rate realtime transmission is also an important issue.This paper describes a 220-GHz solid-state dual-carrier wireless link whose maximum transmission real-time data rates are 20.8 Gbps(10.4 Gbps per channel).By aggregating two carrier signals in the THz band,the contradiction between high real-time data rate communication and low sampling rate analog-to-digital(ADC)and digital-to-analog converter(DAC)is alleviated.The transmitting and receiving front-ends consist of 220-GHz diplexers,220-GHz sub-harmonic mixers based on anti-parallel Schottky barrier diodes,G-band low-noise amplifiers(LNA),WR-4.3 band high-gain Cassegrain antennas,high data rates dual-DAC and-ADC baseband platform and other components.The low-density parity-check(LDPC)encoding is also realized to improve the bit error rate(BER)of the received signal.Modulated signals are centered at 214.4 GHz and 220.6 GHz with-11.9 dBm and-13.4 dBm output power for channel 1 and 2,respectively.This link is demonstrated to achieve 20.8-Gbps real-time data transmission using 16-QAM modulation over a distance of 1030 m.The measured signal to noise ratio(SNR)is 17.3 dB and 16.5 dB,the corresponding BER is 8.6e-7 and 3.8e-7,respectively.Furthermore,4K video transmission is also carried out which is clear and free of stutter.The successful transmission of aggregated channels in this wireless link shows the great potential of THz communication for future wireless high-rate real-time data transmission applications.展开更多
<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presen...<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presented. It is shown that the calibrated BER, which would otherwise be under-estimated without the correction factor, can reliably monitor the performance of optical coherent systems near the target BER of 10<sup>-3</sup> for quadrature phase shift keying (QPSK), 16-QAM, and 64-QAM employing carrier phase recovery with differential decoding to compensate for laser phase noise. The impact on the number of symbols used to estimate the BER from EVM analysis is also presented and compared to the BER obtained by error counting. </div>展开更多
基金the National Natural Science Foundation of China(No.60272009,No.60572090,No.60472045 and No.60496313)
文摘The paper proposed an improved Ordered Successive Interference Cancellation(OSIC) detection scheme for V-BLAST systems with square/rectangular Quadrature Amplitude Modulation(QAM) modulation.It utilizes an equivalent real-valued vector expression of relationship between transmit signals and received signals,exploits the constellation's product-form structure and can eventually make the order,in which components of the transmit signals vector are extracted,more "optimal" in some sense.Thereby,it can offer an improved error probability as compared to the conventional OSIC detection scheme.In addition,the paper also proposes an efficient projection al-gorithm to calculate nulling vectors in a simple recursive fashion in order to avoid the vast increase of complexity,which is due to the fact that the original complex N -dimensional data vector and M×N channel matrix are transformed into a real 2N -dimensional data vector and a real 2M ×2N channel matrix respectively.A scrutinous complexity analysis shows that the complexity increases by only 33% as compared to the conventional scheme.
基金supported by the National "973" Program of China(No.2010CB328300)the National "863" Program of China(No.2012AA011302)
文摘By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km standard single mode fiber (SSMF) transmission in the C- and L-bands with 25-GHz channel spacing. 368 optical channels with bandwidth spacing of 25 GHz are generated from 16 external cavity laser sources. After 160-km SSMF transmission, all tested bit error rate (BER) are under 3.8×10^-3, which can be recovered by 7% FEC threshold. Within each channel, we achieve the spectral efficiency of 6.85 bit/s/Hz in C/L band.
文摘Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding performance. Furthermore, bit-interleaved in-phase and quadrature phase (I-Q) Turbo coded modulation scheme are designed similarly with I-Q trellis coded modulation (TCM). Through performance evaluation and analysis, it can be seen that the novel mapping rule outperforms traditional one and the I-Q Turbo coded modulation can not achieve good performance as expected. Therefore, there is not obvious advantage in using I-Q method in bit-interleaved Turbo coded modulation.
文摘Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found as the key techniques for choosing a label mapping. Based on this discovery, a novel mapping design criteflon is proposed and two label mappings are searched according to it. Simulation results show that the performance of BICM-ID using the novel mappings is better than the former ones. The extrinsic information transfer (EXIT) chart is introduced and it is used to evaluate the proposed mapping design criteria.
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 90604035)the National 863 High-Tech R&D Program (No. 2007AA01Z228)the 111 Project (No. 111-2-14)
文摘In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.
文摘Mapping design criteria of bit-interleaved coded modulation with iterative decoding (BICM-ID) with square 16QAM are analyzed. Three of the existing criteria are analyzed and compared with each other. Through the comparison, two main characters of the mapping design criteria are found. They are the harmonic mean of the minimum squared Euclidean distance and the average of Hamming distances with the nearest Euclidean distance. Based on these two characters, a novel mapping design criterion is proposed and a label mapping named mixed mapping is searched according to it. Simulation results show that mixed mapping performs better than the other mappings in BICM-ID system.
基金supported by the National Natural Science Foundation of China(61171101)the State Major Science and Technology Special Projects(2009ZX03003-011-03)
文摘The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.
基金National Natural Science Foundation ofChina( No.6972 5 0 0 1)
文摘The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Personal Communications Systems). This paper investigated the combination of turbo codes with Unequal Error Protection (UEP) and 16-QAM modulation for EVRC codec of Rate 1 to get power and bandwidth efficient coding scheme. The results show that the UEP system outperforms the Equal Error Protection (EEP) one by 1.45 dB at BER of 10 -5.
基金The National Natural Science Foundation of China(No.61201143)Innovation Foundations of CAST(ITS)(No.F-WYY-2013-016)the Fundamental Research Funds for the Central Universities(No.HIT.IBRSEM.201309)
文摘A bandwidth-exchange cooperation algorithm based on the Nash bargaining solution (NBS) is proposed to encourage the selfish users to participate with more cooperation so as to improve the users' energy efficiency. As a result, two key problems, i.e. , when to cooperate and how to cooperate, are solved. For the first problem, a proposed cooperation condition that can decide when to cooperate and guarantee users' energy efficiency achieved through cooperation is not lower than that achieved without cooperation. For the second problem, the cooperation bandwidth allocations (CBAs) based on the NBS solve the problem how to cooperate when cooperation takes place. Simulation results show that, as the modulation order of quadrature amplitude modulation (QAM) increases, the cooperation between both users only occurs with a large signal-to-noise ratio (SNR). Meanwhile, the energy efficiency decreases as the modulation order increases. Despite all this, the proposed algorithm can obviously improve the energy efficiency measured in bits-per-Joule compared with non-cooperation.
基金the National Natural Science Foundation of China(NSFC)under Grant 91738102,Grant 61771116,and Grant 62022022。
文摘With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz communications a step closer to real scenario application,solving high data rate realtime transmission is also an important issue.This paper describes a 220-GHz solid-state dual-carrier wireless link whose maximum transmission real-time data rates are 20.8 Gbps(10.4 Gbps per channel).By aggregating two carrier signals in the THz band,the contradiction between high real-time data rate communication and low sampling rate analog-to-digital(ADC)and digital-to-analog converter(DAC)is alleviated.The transmitting and receiving front-ends consist of 220-GHz diplexers,220-GHz sub-harmonic mixers based on anti-parallel Schottky barrier diodes,G-band low-noise amplifiers(LNA),WR-4.3 band high-gain Cassegrain antennas,high data rates dual-DAC and-ADC baseband platform and other components.The low-density parity-check(LDPC)encoding is also realized to improve the bit error rate(BER)of the received signal.Modulated signals are centered at 214.4 GHz and 220.6 GHz with-11.9 dBm and-13.4 dBm output power for channel 1 and 2,respectively.This link is demonstrated to achieve 20.8-Gbps real-time data transmission using 16-QAM modulation over a distance of 1030 m.The measured signal to noise ratio(SNR)is 17.3 dB and 16.5 dB,the corresponding BER is 8.6e-7 and 3.8e-7,respectively.Furthermore,4K video transmission is also carried out which is clear and free of stutter.The successful transmission of aggregated channels in this wireless link shows the great potential of THz communication for future wireless high-rate real-time data transmission applications.
文摘<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presented. It is shown that the calibrated BER, which would otherwise be under-estimated without the correction factor, can reliably monitor the performance of optical coherent systems near the target BER of 10<sup>-3</sup> for quadrature phase shift keying (QPSK), 16-QAM, and 64-QAM employing carrier phase recovery with differential decoding to compensate for laser phase noise. The impact on the number of symbols used to estimate the BER from EVM analysis is also presented and compared to the BER obtained by error counting. </div>