We justify and extend the standard model of elementary particle physics by generalizing the theory of relativity and quantum mechanics. The usual assumption that space and time are continuous implies, indeed, that it ...We justify and extend the standard model of elementary particle physics by generalizing the theory of relativity and quantum mechanics. The usual assumption that space and time are continuous implies, indeed, that it should be possible to measure arbitrarily small intervals of space and time, but we ignore if that is true or not. It is thus more realistic to consider an extremely small “quantum of length” of yet unknown value <em>a</em>. It is only required to be a universal constant for all inertial frames, like<em> c</em> and <em>h</em>. This yields a logically consistent theory and accounts for elementary particles by means of four new quantum numbers. They define “particle states” in terms of modulations of wave functions at the smallest possible scale in space-time. The resulting classification of elementary particles accounts also for dark matter. Antiparticles are redefined, without needing negative energy states and recently observed “anomalies” can be explained.展开更多
In accordance with the holographic principle, by counting the states of the scalar field just at the event horizon of the Vaidya-Bonner black hole, the holographic entropy bound of the black hole is calculated and the...In accordance with the holographic principle, by counting the states of the scalar field just at the event horizon of the Vaidya-Bonner black hole, the holographic entropy bound of the black hole is calculated and the Bekenstein- Hawking formula is obtained, With the generalized uncertainty principle, the divergence of state density at event horizon in the ordinary quantum field theory is removed, With the residue theorem, the integral trouble in the calculation is overcome. The present result is quantitatively tenable and the holographic principle is realized by applying the quantum field theory to the black hole entropy problem. Compared with some previous works, it is suggested that the quantum states contributing to black hole entropy should be restricted on the event horizon.展开更多
Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of ...Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of quantum gravity.展开更多
文摘We justify and extend the standard model of elementary particle physics by generalizing the theory of relativity and quantum mechanics. The usual assumption that space and time are continuous implies, indeed, that it should be possible to measure arbitrarily small intervals of space and time, but we ignore if that is true or not. It is thus more realistic to consider an extremely small “quantum of length” of yet unknown value <em>a</em>. It is only required to be a universal constant for all inertial frames, like<em> c</em> and <em>h</em>. This yields a logically consistent theory and accounts for elementary particles by means of four new quantum numbers. They define “particle states” in terms of modulations of wave functions at the smallest possible scale in space-time. The resulting classification of elementary particles accounts also for dark matter. Antiparticles are redefined, without needing negative energy states and recently observed “anomalies” can be explained.
基金Supported by the National Natural Science Foundation of China under Grant No 10375008, and the National Basic Research Programme of China under Grant No 2003CB716300.
文摘In accordance with the holographic principle, by counting the states of the scalar field just at the event horizon of the Vaidya-Bonner black hole, the holographic entropy bound of the black hole is calculated and the Bekenstein- Hawking formula is obtained, With the generalized uncertainty principle, the divergence of state density at event horizon in the ordinary quantum field theory is removed, With the residue theorem, the integral trouble in the calculation is overcome. The present result is quantitatively tenable and the holographic principle is realized by applying the quantum field theory to the black hole entropy problem. Compared with some previous works, it is suggested that the quantum states contributing to black hole entropy should be restricted on the event horizon.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10573027 and 10373003, and the Natural Science Foundation of Shanghai under Grant No 05ZR14138.
文摘Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of quantum gravity.