Since the tapered quarter wave resonator (QWR) cavity is proven to have a much lower peak surface magnetic field in the short plate and a lower peak surface electric field near the beam tube compared with the straig...Since the tapered quarter wave resonator (QWR) cavity is proven to have a much lower peak surface magnetic field in the short plate and a lower peak surface electric field near the beam tube compared with the straight outer conductor QWR, it has been recommended for the separated sector cyclotron linac injector system in the heavy ion research facility in Lanzhou. This paper is focused on the multipacting (MP) analysis for the tapered QWR with a frequency of 80.5 MHz and beta of 0.085. Using the Analyst program, MP bands can be simulated and analyzed with the Particle Tracking module to identify potential problems in the cavity design. This paper will present the simulation results of MP for the tapered QWR cavity.展开更多
基金Supported by National Nature Science Foundation of China(91026001)
文摘Since the tapered quarter wave resonator (QWR) cavity is proven to have a much lower peak surface magnetic field in the short plate and a lower peak surface electric field near the beam tube compared with the straight outer conductor QWR, it has been recommended for the separated sector cyclotron linac injector system in the heavy ion research facility in Lanzhou. This paper is focused on the multipacting (MP) analysis for the tapered QWR with a frequency of 80.5 MHz and beta of 0.085. Using the Analyst program, MP bands can be simulated and analyzed with the Particle Tracking module to identify potential problems in the cavity design. This paper will present the simulation results of MP for the tapered QWR cavity.