1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between ...1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.展开更多
This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and ...This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and solutal relaxation times of fluids are studied with a Cattaneo-Christov double diffusion theory rather than the classical Fourier’s and Fick’s laws.A novel idea of a Buongiorno nanofluid model together with the Cattaneo-Christov theory is introduced for the first time for the Maxwell fluid flow over a rotating disk.Additionally,the thermal and solutal distributions are controlled with the impacts of heat source and chemical reaction.The classical von Karman similarities are used to acquire the non-linear system of ordinary differential equations(ODEs).The analytical series solution to the governing ODEs is obtained with the well-known homotopy analysis method(HAM).The validation of results is provided with the published results by the comparison tables.The graphically presented outcomes for the physical problem reveal that the higher values of the stretching strength parameter enhance the radial velocity and decline the circumferential velocity.The increasing trend is noted for the axial velocity profile in the downward direction with the higher values of the stretching strength parameter.The higher values of the relaxation time parameters in the Cattaneo-Christov theory decrease the thermal and solutal energy transport in the flow of Maxwell nanoliquids.The higher rate of the heat transport is observed in the case of a larger thermophoretic force.展开更多
The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks Chandler Andersen (WCA) appro...The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks Chandler Andersen (WCA) approximation and a Barker Henderson (BH) theory for long-range attraction. Within the framework of density functional theory (DFT), vapour liquid interracial properties including density profile and surface tension, and vapour-liquid nucleation properties including density profile, work of formation and number of particles are investigated for spherical and chain- like molecules. The obtained vapour liquid surface tension and the number of particles in critical nucleus for Lennard- Jones (L J) fluids are consistent with the simulation results. The influences of supersaturation, temperature and chain length on vapour liquid nucleation properties are discussed.展开更多
An analytical equation of state (EOS) for hard core Asakura-Oosawa (AO) fluid is established by combining the AO potential, the first-order perturbation theory and the radial distribution function (RDF) for the hard s...An analytical equation of state (EOS) for hard core Asakura-Oosawa (AO) fluid is established by combining the AO potential, the first-order perturbation theory and the radial distribution function (RDF) for the hard sphere fluid.The phase equilibria are studied by using the renormalization-group (RG) theory. The obtained results agree well with the simulation data. Investigation shows that the attractive range parameter plays an important role in the phase equilibria for AO fluid.展开更多
The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is ado...The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, ε/κ, d and ms, are regressed frorn the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.展开更多
The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined.The lower permeable disk is located at z=-a,while the upper disk is placed at z=a.Bot...The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined.The lower permeable disk is located at z=-a,while the upper disk is placed at z=a.Both the disks are porous and subjected to uniform injection.The fluid properties such as thermal conductivity vary with temperature.The Cattaneo-Christov thermal expression is implemented along with the Buongiorno nanofluid theory.By operating the similarity functions,the reduced form of the fluid model in terms of ordinary differential equations is obtained and solved by the bvp4 c numerical technique.The physical quantities are demonstrated graphically on the velocity and temperature fields.Three-dimensional flow arrangements and twodimensional contour patterns against several dimensionless variables are also sketched.The numerical values of the local Nusselt and Sherwood numbers for various quantities are presented in tabular set-up.The intensity of the linear relationship between the Nusselt and Sherwood numbers is assessed through Pearson’s product-moment correlation technique.The statistical implication of the linear association between variables is also examined by the t-test statistic approach.展开更多
This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. T...This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. The conservation and balance laws of CCM constitute the core of the mathematical model. Constitutive theories for the Cauchy stress tensor are derived using the conjugate pair in the entropy inequality, additional desired physics, and the representation theorem. The constitutive theories for the Cauchy stress tensor consider convected time derivatives of Green’s strain tensor or the Almansi strain tensor up to order n and the convected time derivatives of the Cauchy stress tensor up to order m. The resulting constitutive theories of order (m, n) are based on integrity and are valid for dilute as well as dense polymeric, compressible, and incompressible fluids with variable material coefficients. It is shown that Maxwell, Oldroyd-B, and Giesekus constitutive models can be described by a single constitutive theory. It is well established that the currently used Maxwell and Oldroyd-B models predict zero normal stress perpendicular to the flow direction. It is shown that this deficiency is a consequence of not retaining certain generators and invariants from the integrity (complete basis) in the constitutive theory and can be corrected by including additional generators and invariants in the constitutive theory. Similar improvements are also suggested for the Giesekus constitutive model. Model problem studies are presented for BVPs consisting of fully developed flow between parallel plates and lid-driven cavities utilizing the new constitutive theories for Maxwell, Oldroyd-B, and Giesekus fluids. Results are compared with those obtained from using currently used constitutive theories for the three polymeric fluids.展开更多
Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect ...Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar tensor theory of gravitation. Some physical properties of the model are also discussed.展开更多
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, ...Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.展开更多
A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is ...The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.展开更多
Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper...Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper, a new theory about the nature of charges, particles and proposed structures for atoms were presented. This theory explains how an ideal quantum fluid (IQF) including hypothetical dark matter or fundamental elementary particles (FEPs) can produce the building blocks of matter. This theory describes quadruple blocks with two types of independent charges that can create different characteristics for these building blocks. Quadruple blocks have similarities and differences with the fundamental particles in standard model. This theory also explains the possible mechanism of creation the next generation of particles such as protons and neutrons.展开更多
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco...We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.展开更多
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structu...The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.展开更多
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba...This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field.展开更多
This paper is the third one of a series of three papers on the fluid evolution of the crust upper mantle and the causes of earthquakes. Based on the last two papers, a model of the crustal resistivity structure and t...This paper is the third one of a series of three papers on the fluid evolution of the crust upper mantle and the causes of earthquakes. Based on the last two papers, a model of the crustal resistivity structure and the deep seated fluid evolution is presented, and also a seismogeny theory is set up, which is called the potential kinetic energy transformation model. In this model, the crustal deep seated fluid evolution is considered to take the most important effect on the seismogenic process. Taking the Tangshan M 7.8 earthquake of 1976 as an example, the earthquakes occurred in a pull apart rifting basin are analyzed, and finally the crust outgassing in the seismogenic processes is discussed, referring to the here presented theory of seismogeny.展开更多
The dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The current predominately predictive modeling deals with the flow of the viscoelastic micropola...The dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The current predominately predictive modeling deals with the flow of the viscoelastic micropolar fluid in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov(C-C) heat and mass flux expressions. Besides, the thermal radiation effects are contributed in the energy equation and aspect of the radiation parameter, and the Prandtl number is specified by the one-parameter approach.The formulated expressions are converted to the dimensionless forms by relevant similarity functions. The analytical solutions to these expressions have been erected by the homotopy analysis method. The variations in physical quantities, including the velocity,the temperature, the effective local Nusselt number, the concentration of nanoparticles,and the local Sherwood number, have been observed under the influence of emerging parameters. The results have shown good accuracy compared with those of the existing literature.展开更多
Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pr...Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.展开更多
Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter m...Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29976035)the Natural Science Foundation of Zhejiang Provincial (No. RC01051).
文摘1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.
文摘This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and solutal relaxation times of fluids are studied with a Cattaneo-Christov double diffusion theory rather than the classical Fourier’s and Fick’s laws.A novel idea of a Buongiorno nanofluid model together with the Cattaneo-Christov theory is introduced for the first time for the Maxwell fluid flow over a rotating disk.Additionally,the thermal and solutal distributions are controlled with the impacts of heat source and chemical reaction.The classical von Karman similarities are used to acquire the non-linear system of ordinary differential equations(ODEs).The analytical series solution to the governing ODEs is obtained with the well-known homotopy analysis method(HAM).The validation of results is provided with the published results by the comparison tables.The graphically presented outcomes for the physical problem reveal that the higher values of the stretching strength parameter enhance the radial velocity and decline the circumferential velocity.The increasing trend is noted for the axial velocity profile in the downward direction with the higher values of the stretching strength parameter.The higher values of the relaxation time parameters in the Cattaneo-Christov theory decrease the thermal and solutal energy transport in the flow of Maxwell nanoliquids.The higher rate of the heat transport is observed in the case of a larger thermophoretic force.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 20576030 and 20606009), the Program for New Century Excellent Talents of China (Grant No 06-0206), and the Research Fund of Key Laboratory for Nanomaterials, Ministry of Education of China (Grant No 2006-2).
文摘The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks Chandler Andersen (WCA) approximation and a Barker Henderson (BH) theory for long-range attraction. Within the framework of density functional theory (DFT), vapour liquid interracial properties including density profile and surface tension, and vapour-liquid nucleation properties including density profile, work of formation and number of particles are investigated for spherical and chain- like molecules. The obtained vapour liquid surface tension and the number of particles in critical nucleus for Lennard- Jones (L J) fluids are consistent with the simulation results. The influences of supersaturation, temperature and chain length on vapour liquid nucleation properties are discussed.
文摘An analytical equation of state (EOS) for hard core Asakura-Oosawa (AO) fluid is established by combining the AO potential, the first-order perturbation theory and the radial distribution function (RDF) for the hard sphere fluid.The phase equilibria are studied by using the renormalization-group (RG) theory. The obtained results agree well with the simulation data. Investigation shows that the attractive range parameter plays an important role in the phase equilibria for AO fluid.
基金Supported by the National Natural Science Foundation of China (No. 20102007) and the Fundamental Research Fund of Tsinghua University of China (No. JZ2002003).
文摘The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, ε/κ, d and ms, are regressed frorn the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.
文摘The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined.The lower permeable disk is located at z=-a,while the upper disk is placed at z=a.Both the disks are porous and subjected to uniform injection.The fluid properties such as thermal conductivity vary with temperature.The Cattaneo-Christov thermal expression is implemented along with the Buongiorno nanofluid theory.By operating the similarity functions,the reduced form of the fluid model in terms of ordinary differential equations is obtained and solved by the bvp4 c numerical technique.The physical quantities are demonstrated graphically on the velocity and temperature fields.Three-dimensional flow arrangements and twodimensional contour patterns against several dimensionless variables are also sketched.The numerical values of the local Nusselt and Sherwood numbers for various quantities are presented in tabular set-up.The intensity of the linear relationship between the Nusselt and Sherwood numbers is assessed through Pearson’s product-moment correlation technique.The statistical implication of the linear association between variables is also examined by the t-test statistic approach.
文摘This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. The conservation and balance laws of CCM constitute the core of the mathematical model. Constitutive theories for the Cauchy stress tensor are derived using the conjugate pair in the entropy inequality, additional desired physics, and the representation theorem. The constitutive theories for the Cauchy stress tensor consider convected time derivatives of Green’s strain tensor or the Almansi strain tensor up to order n and the convected time derivatives of the Cauchy stress tensor up to order m. The resulting constitutive theories of order (m, n) are based on integrity and are valid for dilute as well as dense polymeric, compressible, and incompressible fluids with variable material coefficients. It is shown that Maxwell, Oldroyd-B, and Giesekus constitutive models can be described by a single constitutive theory. It is well established that the currently used Maxwell and Oldroyd-B models predict zero normal stress perpendicular to the flow direction. It is shown that this deficiency is a consequence of not retaining certain generators and invariants from the integrity (complete basis) in the constitutive theory and can be corrected by including additional generators and invariants in the constitutive theory. Similar improvements are also suggested for the Giesekus constitutive model. Model problem studies are presented for BVPs consisting of fully developed flow between parallel plates and lid-driven cavities utilizing the new constitutive theories for Maxwell, Oldroyd-B, and Giesekus fluids. Results are compared with those obtained from using currently used constitutive theories for the three polymeric fluids.
文摘Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar tensor theory of gravitation. Some physical properties of the model are also discussed.
文摘Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.
文摘A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
基金support from the National Key Research and Development Program of China(No.2018YFD0900704)the National Natural Science Foundation of China(No.31972796).
文摘The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.
文摘Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper, a new theory about the nature of charges, particles and proposed structures for atoms were presented. This theory explains how an ideal quantum fluid (IQF) including hypothetical dark matter or fundamental elementary particles (FEPs) can produce the building blocks of matter. This theory describes quadruple blocks with two types of independent charges that can create different characteristics for these building blocks. Quadruple blocks have similarities and differences with the fundamental particles in standard model. This theory also explains the possible mechanism of creation the next generation of particles such as protons and neutrons.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
文摘We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)Jiangsu Provincial Innovative Scholars "Climbing" Project of China (Grant No. BK 2009006)+1 种基金National Natural Science Foundation of China (Grant No. 50979034)Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No. CX10B_262Z)
文摘The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.
基金the Committee of the National HighTechnology Research and Development Program of China(863 Program) for providing financial support for thisresearch project (Project No.2006AA06A109)the support provided by the Changjiang Scholarsand Innovative Research Team(No.IRT0411),Ministry ofEducation,China.
文摘This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field.
文摘This paper is the third one of a series of three papers on the fluid evolution of the crust upper mantle and the causes of earthquakes. Based on the last two papers, a model of the crustal resistivity structure and the deep seated fluid evolution is presented, and also a seismogeny theory is set up, which is called the potential kinetic energy transformation model. In this model, the crustal deep seated fluid evolution is considered to take the most important effect on the seismogenic process. Taking the Tangshan M 7.8 earthquake of 1976 as an example, the earthquakes occurred in a pull apart rifting basin are analyzed, and finally the crust outgassing in the seismogenic processes is discussed, referring to the here presented theory of seismogeny.
文摘The dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The current predominately predictive modeling deals with the flow of the viscoelastic micropolar fluid in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov(C-C) heat and mass flux expressions. Besides, the thermal radiation effects are contributed in the energy equation and aspect of the radiation parameter, and the Prandtl number is specified by the one-parameter approach.The formulated expressions are converted to the dimensionless forms by relevant similarity functions. The analytical solutions to these expressions have been erected by the homotopy analysis method. The variations in physical quantities, including the velocity,the temperature, the effective local Nusselt number, the concentration of nanoparticles,and the local Sherwood number, have been observed under the influence of emerging parameters. The results have shown good accuracy compared with those of the existing literature.
基金Project(50574061) supported by the National Natural Science Foundation of China
文摘Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.
基金National Natural Science Foundation of China(Grant Nos.52175066,51805468)Hebei Provincial National Natural Science Foundation of China(Grant No.E2020203090)+1 种基金Science and Technology Project of Hebei Education Department of China(Grant No.ZD2022052)Open Foundation of the Key Laboratory of Fire Emergency Rescue Equipment of China(Grant No.2020XFZB07).
文摘Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.