Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,deg...Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.展开更多
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha...The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.展开更多
In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of...In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.展开更多
The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics ...The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.展开更多
Qilian Mountain permafrost, with area about 10×10^4 km2, locates in the north of Qinghai- Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drill...Qilian Mountain permafrost, with area about 10×10^4 km2, locates in the north of Qinghai- Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drilling Project of Gas Hydrate in Qilian Mountain permafrost, which locates in Juhugeng of Muri Coalfield, Tianjun County, Qinghai Province, has been implemented by China Geological Survey in 2008-2009. Four scientific drilling wells have been completed with a total footage of 2059.13 m. Samples of gas hydrate are collected separately from holes DK-1, DK-2 and DK-3. Gas hydrate is hosted under permafrost zone in the 133-396 m interval. The sample is white crystal and easily burning. Anomaly low temperature has been identified by the infrared camera. The gas hydratebearing cores strongly bubble in the water. Gas-bubble and water-drop are emitted from the hydratebearing cores and then characteristic of honeycombed structure is left. The typical spectrum curve of gas hydrate is detected using Raman spectrometry. Furthermore, the logging profile also indicates high electrical resistivity and sonic velocity. Gas hydrate in Qilian Mountain is characterized by a thinner permafrost zone, shallower buried depth, more complex gas component and coal-bed methane origin etc.展开更多
We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limit...We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limiting factor for tree-growth. The tree rings are also significantly and positively correlated with June precipitation over large areas of the northern Tibetan Plateau (TP). The authors thus consider that the treering based drought reconstruction from 1803-2006 is representative of a large area drought history. During the reconstruction period, persistent and severe dry epochs occurred in the 1820s-1830s, 1870s-1880s, 1920s, and 1950s 1960s, and persistent wet periods were found from 1803-1810s, 1890s-1920s, and 1970s-1980s. The severe dry and wet periods are similar to those found over the northeastern TP, indicating the potential linkages of the drought regimes between them. Comparison with global SST indicates that the drought variability is closely related to the tropical Pacific and Arctic Ocean SSTs, suggesting the connection of regional moisture variations to the Asian monsoon and westerly belt circulations, respectively.展开更多
The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil wat...The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil water and nutrients, exhibits complex variability in arid desert grasslands; thus, it is essentially an impact factor for the distri- bution pattern of desert grasslands. In the present study, an investigation was conducted to estimate the spatial pattern of SOC content in desert grasslands and the association with environmental factors in the diluvial-alluvial plains of northern Qilian Mountains. The results showed that the mean values of SOC ranged from 2.76 to 5.80 g/kg in the soil profiles, and decreased with soil depths. The coefficients of variation (CV) of the SOC were high (ranging from 48.83% to 94.67%), which indicated a strong spatial variability. SOC in the desert grasslands of the study re- gion presented a regular spatial distribution, which increased gradually from the northwest to the southeast. The SOC distribution had a pattern linked to elevation, which may be related to the gradient of climate conditions. Soil type and plant community significantly affected the SOC. The SOC had a significant positive relationship with soil moisture (P〈0.05); whereas, it had a more significant negative relationship with the soil bulk density (BD) (P〈0.01). However, a number of the variations in the SOC could be explained not by the environmental factors involved in this analysis, but rather other factors (such as grazing activity and landscape). The results provide important references for soil carbon storage estimation in this study region. In addition, the SOC association with environmental variables also provides a basis for a sustainable use of the limited grassland resources in the diluvial-alluvial plains of north- ern Qilian Mountains.展开更多
The purpose of the present study was to survey contents of trace elements of Cu, Mn, Fe, and Zn in the surface layer (0-20 cm) in the soil, pasture and serum of sheep in Huangcheng area of Qilian mountain grassland,...The purpose of the present study was to survey contents of trace elements of Cu, Mn, Fe, and Zn in the surface layer (0-20 cm) in the soil, pasture and serum of sheep in Huangcheng area of Qilian mountain grassland, China. Also the soil-plantanimal continuum was analyzed. Soil (n=300), pasture (n=60), and blood serum samples from sheep (n=480) were collected from Huangcheng area of Qilian mountain grassland, China. The contents of trace element in the samples were analyzed by atomic absorption spectrophotometer after digestion. The soil trace elements density distribution shows a ladder-like pattern distribution. Equations developed in the present study for prediction of Fe (R2=0.943) and Zn (R2=0.882) had significant R2 values.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the producti...Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the productivity of alpine ecosystems, due to shrubification under climate change in past decades.In this study, 14 experimental plots and 42 quadrates of the shrubs Potentilla fruticosa and Caragana jubata were selected along altitudes gradients from 3220 to 3650 m a.s.l.(above sea level) on semi-sunny and semi-shady slope in Hulu watershed of Qilian Mountains, China.The foliage, woody component and total aboveground biomass per quadrate were examined using a selective destructive method, then the biomass were estimated via allometric equations based on measured parameters for two shrub species.The results showed that C.jubata accounted for 1–3 times more biomass(480.98 g/m2) than P.fruticosa(191.21 g/m2).The aboveground biomass of both the shrubs varied significantly with altitudinal gradient(P<0.05).Woody component accounted for the larger proportion than foliage component in the total aboveground biomass.The biomass on semi-sunnyslopes(200.27 g/m2 and 509.07 g/m2) was greater than on semi-shady slopes(182.14 g/m2 and 452.89g/m2) at the same altitude band for P.fruticosa and C.jubata.In contrast, the foliage biomass on semi-shady slopes(30.50 g/m2) was greater than on semi-sunny slopes(27.51 g/m2) for two shrubs.Biomass deceased with increasing altitude for P.fruticosa, whereas C.jubata showed a hump-shaped pattern with altitude.Allometric equations were obtained from the easily descriptive parameters of height(H), basal diameter(D) and crown area(C) for biomass of C.jubata and P.fruticosa.Although the equations type and variables comprising of the best model varied among the species, all equations related to biomass were significant(P < 0.005), with determination coefficients(R2) ranging from 0.81 to 0.96.The allometric equations satisfied the requirements of the model, and can be used to estimate the regional scale biomass of P.fruticosa and C.jubata in alpine ecosystems of the Qilian Mountains.展开更多
Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China...Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.展开更多
The Qilian mountain area was examined for using the Logistic-CA-Markov coupling model combined with GIS spatial analyst technology to research the transformation of LUCC, driving force system and simulate future tende...The Qilian mountain area was examined for using the Logistic-CA-Markov coupling model combined with GIS spatial analyst technology to research the transformation of LUCC, driving force system and simulate future tendency of variation. Results show that: (1) Woodland area decreased by 12.55%, while grassland, cultivated land, and settlement areas increased by 0.22%, 7.92%, and 0.03%, respectively, from 1986 to 2014. During the period of 1986 to 2000, forest degradation in the middle section of the mountain area decreased by 1,501.69 km2. Vegetation cover area improved, with a net increase of grassland area of 38.12 km2 from 2000 to 2014. (2) For constructing the system driving force, the best simulation scale was 210m×210m. Based on logistic regression analysis, the contribution (weight) of composite driving forces to land use and cover change was obtained, and the weight value was more objectively compared with AHP and MCE method. (3) In the natural scenarios, it is predicted that land use and cover distribution maps of Qilian mountain area in 2028 and 2042, and the Lee-Sallee index test was adopted. Over the next 27 years (2015-2042), farmland, woodland, grassland, settlement areas show an increasing trend, especially settlements with an obvious change of 0.56%. The area of bare land will decrease by 0.89%. Without environmental degradation, tremendous structural change of LUCC will not occur, and typical characteristic of the vertical zone of the mountain would remain. Farmland and settlement areas will increase, but only in the vicinity of Qilian and Sunan counties.展开更多
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion or...Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.展开更多
The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the...The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.展开更多
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted fro...To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.展开更多
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the ...The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ^18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions.展开更多
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevati...Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P<0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.展开更多
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23060301)the National Natural Science Foundation of China(No.41621001).
文摘Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.
基金supported by the National Natural Science Foundation of China(No.42071057).
文摘The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.
基金the National Key Research and Development Project(No.2018YFC1503206)the National Natural Science Foundation of China(No.41674046).
文摘In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.
基金the Doctoral Programme of Higher Education 97049119 the National Natural Science Foundation of China grant 40072062.
文摘The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.
文摘Qilian Mountain permafrost, with area about 10×10^4 km2, locates in the north of Qinghai- Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drilling Project of Gas Hydrate in Qilian Mountain permafrost, which locates in Juhugeng of Muri Coalfield, Tianjun County, Qinghai Province, has been implemented by China Geological Survey in 2008-2009. Four scientific drilling wells have been completed with a total footage of 2059.13 m. Samples of gas hydrate are collected separately from holes DK-1, DK-2 and DK-3. Gas hydrate is hosted under permafrost zone in the 133-396 m interval. The sample is white crystal and easily burning. Anomaly low temperature has been identified by the infrared camera. The gas hydratebearing cores strongly bubble in the water. Gas-bubble and water-drop are emitted from the hydratebearing cores and then characteristic of honeycombed structure is left. The typical spectrum curve of gas hydrate is detected using Raman spectrometry. Furthermore, the logging profile also indicates high electrical resistivity and sonic velocity. Gas hydrate in Qilian Mountain is characterized by a thinner permafrost zone, shallower buried depth, more complex gas component and coal-bed methane origin etc.
基金supported by the National Natural Science Foundation of China In-novation Team Project(Grant No.40721061)the Na-tional Natural Science Foundation of China(Grant Nos.40671191 and 90502008)+1 种基金the Chinese 111 Project(Grant No.B06026)the One Hundred Talents Program of CAS(Grant No.29O827B11)
文摘We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limiting factor for tree-growth. The tree rings are also significantly and positively correlated with June precipitation over large areas of the northern Tibetan Plateau (TP). The authors thus consider that the treering based drought reconstruction from 1803-2006 is representative of a large area drought history. During the reconstruction period, persistent and severe dry epochs occurred in the 1820s-1830s, 1870s-1880s, 1920s, and 1950s 1960s, and persistent wet periods were found from 1803-1810s, 1890s-1920s, and 1970s-1980s. The severe dry and wet periods are similar to those found over the northeastern TP, indicating the potential linkages of the drought regimes between them. Comparison with global SST indicates that the drought variability is closely related to the tropical Pacific and Arctic Ocean SSTs, suggesting the connection of regional moisture variations to the Asian monsoon and westerly belt circulations, respectively.
基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050406-3)National Natural Science Foundation of China (41201284 and 91125022)
文摘The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil water and nutrients, exhibits complex variability in arid desert grasslands; thus, it is essentially an impact factor for the distri- bution pattern of desert grasslands. In the present study, an investigation was conducted to estimate the spatial pattern of SOC content in desert grasslands and the association with environmental factors in the diluvial-alluvial plains of northern Qilian Mountains. The results showed that the mean values of SOC ranged from 2.76 to 5.80 g/kg in the soil profiles, and decreased with soil depths. The coefficients of variation (CV) of the SOC were high (ranging from 48.83% to 94.67%), which indicated a strong spatial variability. SOC in the desert grasslands of the study re- gion presented a regular spatial distribution, which increased gradually from the northwest to the southeast. The SOC distribution had a pattern linked to elevation, which may be related to the gradient of climate conditions. Soil type and plant community significantly affected the SOC. The SOC had a significant positive relationship with soil moisture (P〈0.05); whereas, it had a more significant negative relationship with the soil bulk density (BD) (P〈0.01). However, a number of the variations in the SOC could be explained not by the environmental factors involved in this analysis, but rather other factors (such as grazing activity and landscape). The results provide important references for soil carbon storage estimation in this study region. In addition, the SOC association with environmental variables also provides a basis for a sustainable use of the limited grassland resources in the diluvial-alluvial plains of north- ern Qilian Mountains.
基金The financial supports are greatly appreciated from the Central Public-interest Scientific Institution Basal Research Fund of China(1610322013003)the Agriculture Achievements Transformation Fund Project of the Ministry of Science and Technology of China(2010GB23260564)
文摘The purpose of the present study was to survey contents of trace elements of Cu, Mn, Fe, and Zn in the surface layer (0-20 cm) in the soil, pasture and serum of sheep in Huangcheng area of Qilian mountain grassland, China. Also the soil-plantanimal continuum was analyzed. Soil (n=300), pasture (n=60), and blood serum samples from sheep (n=480) were collected from Huangcheng area of Qilian mountain grassland, China. The contents of trace element in the samples were analyzed by atomic absorption spectrophotometer after digestion. The soil trace elements density distribution shows a ladder-like pattern distribution. Equations developed in the present study for prediction of Fe (R2=0.943) and Zn (R2=0.882) had significant R2 values.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金funded by the National Natural Science Foundation of China(Grant Nos.91025011,91125013,41222001)the Project for Incubation of Specialists in Glaciology and Geocryology of National Natural Science Foundation of China(J1210003/J0109)
文摘Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the productivity of alpine ecosystems, due to shrubification under climate change in past decades.In this study, 14 experimental plots and 42 quadrates of the shrubs Potentilla fruticosa and Caragana jubata were selected along altitudes gradients from 3220 to 3650 m a.s.l.(above sea level) on semi-sunny and semi-shady slope in Hulu watershed of Qilian Mountains, China.The foliage, woody component and total aboveground biomass per quadrate were examined using a selective destructive method, then the biomass were estimated via allometric equations based on measured parameters for two shrub species.The results showed that C.jubata accounted for 1–3 times more biomass(480.98 g/m2) than P.fruticosa(191.21 g/m2).The aboveground biomass of both the shrubs varied significantly with altitudinal gradient(P<0.05).Woody component accounted for the larger proportion than foliage component in the total aboveground biomass.The biomass on semi-sunnyslopes(200.27 g/m2 and 509.07 g/m2) was greater than on semi-shady slopes(182.14 g/m2 and 452.89g/m2) at the same altitude band for P.fruticosa and C.jubata.In contrast, the foliage biomass on semi-shady slopes(30.50 g/m2) was greater than on semi-sunny slopes(27.51 g/m2) for two shrubs.Biomass deceased with increasing altitude for P.fruticosa, whereas C.jubata showed a hump-shaped pattern with altitude.Allometric equations were obtained from the easily descriptive parameters of height(H), basal diameter(D) and crown area(C) for biomass of C.jubata and P.fruticosa.Although the equations type and variables comprising of the best model varied among the species, all equations related to biomass were significant(P < 0.005), with determination coefficients(R2) ranging from 0.81 to 0.96.The allometric equations satisfied the requirements of the model, and can be used to estimate the regional scale biomass of P.fruticosa and C.jubata in alpine ecosystems of the Qilian Mountains.
基金This research was supported by the National Natural Science Foundation of China grant 49372136.
文摘Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.
基金supported by National Natural Science Foundation of China (No. 4961038)Natural Science Foundation of Sichuan Province Education Department (No. 16ZB0402)+1 种基金Engineering and Technical College of Chengdu University of Technology Foundation (No. C122014014)the key research projects of Science and Technology Bureau of Leshan Town
文摘The Qilian mountain area was examined for using the Logistic-CA-Markov coupling model combined with GIS spatial analyst technology to research the transformation of LUCC, driving force system and simulate future tendency of variation. Results show that: (1) Woodland area decreased by 12.55%, while grassland, cultivated land, and settlement areas increased by 0.22%, 7.92%, and 0.03%, respectively, from 1986 to 2014. During the period of 1986 to 2000, forest degradation in the middle section of the mountain area decreased by 1,501.69 km2. Vegetation cover area improved, with a net increase of grassland area of 38.12 km2 from 2000 to 2014. (2) For constructing the system driving force, the best simulation scale was 210m×210m. Based on logistic regression analysis, the contribution (weight) of composite driving forces to land use and cover change was obtained, and the weight value was more objectively compared with AHP and MCE method. (3) In the natural scenarios, it is predicted that land use and cover distribution maps of Qilian mountain area in 2028 and 2042, and the Lee-Sallee index test was adopted. Over the next 27 years (2015-2042), farmland, woodland, grassland, settlement areas show an increasing trend, especially settlements with an obvious change of 0.56%. The area of bare land will decrease by 0.89%. Without environmental degradation, tremendous structural change of LUCC will not occur, and typical characteristic of the vertical zone of the mountain would remain. Farmland and settlement areas will increase, but only in the vicinity of Qilian and Sunan counties.
基金a part of research results of a state key research project(No.G1999043200)
文摘Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.
基金National Key Project for Basic Research on Tibetan Plateau, No.2005CB422004 Knowledge Innovation Project of CAS, No.KZCX3-SW-339
文摘The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.
基金funded by the Youth Innovation Promotion Association,CAS(2013274)National Nature Science Foundation of China(91547102 and 41661005)+2 种基金Gansu Province Science Fund for Distinguished Young Scholars(1506RJDA282)National Key R&D Program of China(2017YFC0404305)National Natural Science Foundation Innovation Research Group Science Foundation of China(41421061)
文摘To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
基金supported by a West Light Program for Talent Cultivation of the Chinese Academy of SciencesGansu Province Science Foundation for Distinguished Young Scholars (No. 1506RJDA282)+3 种基金the National Natural Science Foundation (No. 91547102)the CAS/SAFEA International Partnership Program for Creative Research Teamsa postdoctoral fellowship of ZongXing Li in the International Exchange Plans from the China Postdoctoral Association (No. 20140043)the Youth Innovation Promotion Association, CAS (No. 2013274)
文摘The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ^18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions.
基金funded by National Key R&D Program of China(2017YFA0604801,2016YFC0501802)Natural Science Foundation of Qinghai Province(Grant No.2016-ZJ-910)+1 种基金CAS“Light of West China”Program(2016):Study on the soil moisture with the restoration process of degraded alpine meadows in the Three-River Headwater Region,ChinaQinghai innovation platform construction project(2017-ZJ-Y20)supported this work
文摘Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P<0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.