The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and...The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and the latest research progeny. The first finished 1:3000000 Triassic tectonic lithofacies paleogeographic maps in the Qiangtang area shows that the Triassic tectonic unit in the Qiangtang area can been divided into three parts from north to south: northern Qiangtang block; Longmucuo-Shuanghu suture zone; and southern Qiangtang block. The early-middle Triassic tectonic paleogeography in the Qiangtang area is divides into three sub- units: northern Qiangtang passive continental marginal basin (NQPB), Longmucuo- Shuanghu residual basin (LSRB) and southern Qiangtang residual basin (SQRB). The NQPB can be subdivided into four paleogeography units: The Tanggula-Zangxiahe shallow and bathyal sea; The Wangquanhe- Yingshuiquan carbonate platform; The Rejuechaka-Jiangaidarina littoral- shallow sea; and Qiangtang central uplift. The above units of The NQPB possess EW trend, geomorphology high in the south and low in the north, the seawater depth northward. The basinal paleo-current direction is unidirectional, and basinal tectonic subsidence center is in accord with the depo-center, located in the Tanggula-Zangxiahe belt, north of the basin. The sedimentation and tectonic evolution of the NQPB are characterized with passive continental marginal basin. The Qiangtang central orogenic denuded area (ancient land) may be as a sedimentary materials source of the NQPB. SQRB can be divided into two units: Duoma carbonate platform and southern Qiangtang neritic-deep sea. The late Triassic tectonic paleogeography in the Qiangtang area is the framework of the "archipelagic-sea" as a whole, and it may be divided into three sub-units: northern Qiangtang back- arc foreland basin(NQFB), Longmucuo-Shuanghu residual basin(LSRB) and southern Qiangtang marginal-sea basin(SQMB). Thereinto, NQFB can be divided into five paleogeography units: the Zangxiahe-Mingjinghu bathyal basin characterized with the flysch; the Tanggula shallow-sea shelf with the fine-clastics; the Juhuashang platform with carbonates; the Tumenggela-Shuanghu coastal- delta with coal-bearing clastics and the Nadigangri- Geladandong arc with volcanics and tuffs. In transverse section, the NQFB fills is wedge-shaped, and the sediments characterized with thicker in north and thinner in south, and with double materials derived from the Ruolagangri orogenic belt in north and the Shuanghu central orogenic belt in south. The late Triassic depocenter of NQFB is located in the middle of the basin, the Yakecuo-Bandaohu-Quemocuo belt, but the subsidence center in the north, the Zangxiahe- Mingjinghu belt, and basinal tectonic subsidence center not concordant with the depo-center. Late Triassic, the SQMB may be divided into three sub-units: Xiaochaka shallow-sea; Riganpeicuo platform~ and South Qiangtang southern bathyal basin. In transverse section, the basement of the SQMB is characterized with low in the northern and southern, but high in the middle; forming wedge shaped sediments with thicker in the north and thinner in the south; the sedimentary materials derived from the Qiangtang central uplift and Nadigangri arcs in north. The late Triassic subsidence centre of the SQMB is located in the northern (Xiaochaka area), but the depocenter in the southern (Qixiancuo Suobucha area). The sedimentation and tectonic evolution of the SQMB are characterized with marginal sea.展开更多
Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The r...Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The results of experi-ments in the field revealed that the cooling effect of a crushed rock embankment is influenced mainly by the natural con-vection in winter and shield effect in summer,the ventilation of crushed rocks,and the ground temperature regime be-neath the embankment.Consequently,these three factors should be taken into account in numerical simulations,but it is as a result of natural convection only.展开更多
In this paper we present new zircon U-Pb ages,whole-rock major and trace element analyses,and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture.Our aim ...In this paper we present new zircon U-Pb ages,whole-rock major and trace element analyses,and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture.Our aim is to constrain the Early Permian-Late Triassic tectonic evolution of the region.Zircons from the magmatic rocks of the Tuotuohe region are euhedralsubhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.4-4.6),indicating a magmatic origin.The zircon U-Pb ages obtained using LA-ICP-MS are 281 ± 1 Ma,258 ± 1 Ma,244 ± 1 Ma,and 216 ± 1 Ma,which indicate magmatism in the Early Permian-Late Triassic.A diorite from Bashihubei (BSHN) has SiO2 =57.18-59.97 wt%,Al2O3=15.70-16.53 wt%,and total alkalis (Na2O + K2O) =4.46-6.34 wt%,typical of calc-alkaline and metaluminous series.A gabbro from Bashibadaoban (BSBDB) belongs to the alkaline series,and is poor in SiO2 (45.46-54.03 wt%) but rich in Al2O3 (16.19-17.39 wt%) and total alkalis (Na2O + K2O =5.48-6.26 wt%).The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs,and they have no obvious Eu anomaly; they have relatively low MgO contents (2.54-4.93 wt%),Mg# values of 43 to 52,and low Cr and Ni contents (8.07-33.6 ppm and 4.41-14.2 ppm,respectively),indicating they differentiated from primitive mantle magmas.They have low Nb/U,Ta/ U,and Ce/Pb ratios (1.3-9.6,0.2-0.8,and 0.1-18.1,respectively),and their initial Hf isotopic ratios range from +9.6 to +16.9 (BSHN diorite) and +6.5 to +12.6 (BSBDB gabbro),suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids.Taking all the new data together,we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian-Late Triassic:oceanic crust subduction before the Early Permian,continental collision during the Early-Middle Triassic,and post-collisional extension from the Late Triassic.展开更多
This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of ru...This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of rubble roadbed engineering in permafrost regions. The AHP(Analytic Hierarchy Process) method is thus employed to establish the evaluation indicator system. The evaluation factor is selected by analyzing the mutual relation between the permafrost environment and roadbed engineering. Thus, a hierarchical structure model is established based on the selected evaluation indices. Each factor is weighted to determine the status in the evaluation system, and grading standards are built for providing a basis for the evaluation. Then, the fuzzy mathematical method is introduced to evaluate the measure effect of rubble roadbed engineering in permafrost regions along the Chadaer-Muli Railway. Results show that most of the permafrost roadbed is in a preferable condition(b) along the Chaidaer-Muli Railway due to rubble engineering measures. This proportion reaches to 86.1%. The proportion in good(a), general(c) and poor states(d) are 0.0%, 7.5% and 6.4%, respectively, in all the evaluation sections along the Chaidaer-Muli Railway. Ground-temperature monitoring results are generally consistent with AHP-FUZZY evaluation results. This means that the AHP-FUZZY method can be applied to evaluate the effect of rubble roadbed engineering measures in permafrost regions. The effect evaluation of engineering measures will provide timely and effective feedback information for further engineering design. The series of engineering measures will more effectively protect permafrost stability.展开更多
[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of ...[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.展开更多
The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the ...The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the decreasing of land capacity and river disconnecting. The status of water environmental degradation in this paper was analyzed based on the data and field investigation. The results indicated that the surface water area in the region has obviously decreased owing to the climate changes and human irrational use of water resources and the continuous lowering of the regional groundwater table and the steadily decreasing tendency of the flow rate in the source areas of the Yellow River.展开更多
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o...The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.展开更多
<div style="text-align:justify;"> With global warming and increased human activity, more and more ground surface areas have been affected, which leads to the creation of many problems. To understand th...<div style="text-align:justify;"> With global warming and increased human activity, more and more ground surface areas have been affected, which leads to the creation of many problems. To understand the ecological environment changes in a typical alpine region, information on landcovers changes in the study area from 2000 to 2020 was obtained by combining remote sensing, geographic information system, and traditional statistical analysis for the Sanjiangyuan National Nature Reserve on the Qinghai-Tibet Plateau, China. The results show that the changes of surface cover in Sanjiangyuan National Nature Reserve are relatively concentrated, mainly distributed in the sections of south, northwest, central, and northeast, with the area of the changed regions and the unchanged regions being 31,127.45 km<sup>2</sup> and 271,941.37 km<sup>2</sup>, respectively. The transformation between the various types of ground landcover is mainly characterized by a shift from other types to grassland and from grassland to bare land. And the regions of change are mostly concentrated between 3500 - 4600 m in elevation. </div>展开更多
Due to the complexity of geological background and the adverseness of natural geographical environment in the Qinghai-Tibet Plateau,it is very difficult to carry out petroleum geological study in this region. The Qing...Due to the complexity of geological background and the adverseness of natural geographical environment in the Qinghai-Tibet Plateau,it is very difficult to carry out petroleum geological study in this region. The Qinghai-Tibet Plateau is the only blank space of petroleum exploration on a large scale. The authors carried out the surface geochemical exploration of oil and gas in the Gangbatong-Ya'anxiang and Dongqiao-Nam Co of the Qinghai-Tibet region. Based on the data of actual detection and experiments in the studied area,the characteristics of concentration and profile distribution of the main geochemical exploration indicators(total adsorbed hydrocarbon,altered carbonate,thermal released mercury,etc.) were discussed. The origin of hydrocarbon was also discussed. Moreover,the oil and gas potential of different sections in the Qiangtang Basin and the Biru Basin were evaluated,which could provide references for the exploration and prediction of oil and gas in this region. The concentrations of total adsorbed hydrocarbons in the Ya'anxiang of Suoxian County-Zadong of Baqing County and the Jiecha-Dangxiong of Anduo County in the Qinghai-Tibet region are high,averaging 312.64 μL·kg-1 and 164.36 μL·kg-1. Their altered carbonate concentrations are relatively low,averaging 0.11% and 0.56%. Their concentrations of thermal released mercury are relatively high,averaging 13.09×10-9 and 1.94×10-9. Geochemical exploration results in fact reflect hydrocarbon information in the underground,which are mainly petroleum associated gas and over-matured cracking gas. The Jiecha-Charenluma and the Xiamaya'ertong-Suoba sections in the Qiangtang Basin are the most favorable ones for oil and gas and the Ekou-Zadong section is relatively favorable one,while the Nam Co and the Zigetangcuo-Dongqiao sections in the Biru Basin are the favorable ones for oil and gas,and the Jiang Co-Nading Co and the Ya'anxiang-Ya'ertong sections are relatively favorable ones.展开更多
Over 40 a observed temperature data in 172 stations in China and historical proxy data were analyzed. Evidence suggested that during 1980-1994, the warmest year appeared first in southeastern part of the Qinghai_Xizan...Over 40 a observed temperature data in 172 stations in China and historical proxy data were analyzed. Evidence suggested that during 1980-1994, the warmest year appeared first in southeastern part of the Qinghai_Xizang (Tibet) Plateau (henceforth SETP) and then gradually spread northwards and eastwards to eastern China. The climatic change on century time scale in recent 600 a shows 3 relatively warm and clod stages in China. Each warm and cold stage appeared first in Tibet Plateau (henceforth TP) and then in the Qilian Mountains, then in the eastern parts of China. The warm and cold stages in TP were 10-60 a earlier than in the eastern China. The facts show that TP is a pilot region of climatic fluctuation in China on the time scale shorter than 10\+3a.展开更多
基金supported by the Project of the Mesozoic Tectonic Lithofacies Paleogeographic Mapping and Synthesize Research in Qinghai-Tibet Plateau, China Geological Survey(CGS),Ministry of Land and Resources, Project No-1212010610101the Project of the Typical Stratigraphical Sections Research in Qinghai-Tibet Plateau,CGS , Project No-1212011121257
文摘The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and the latest research progeny. The first finished 1:3000000 Triassic tectonic lithofacies paleogeographic maps in the Qiangtang area shows that the Triassic tectonic unit in the Qiangtang area can been divided into three parts from north to south: northern Qiangtang block; Longmucuo-Shuanghu suture zone; and southern Qiangtang block. The early-middle Triassic tectonic paleogeography in the Qiangtang area is divides into three sub- units: northern Qiangtang passive continental marginal basin (NQPB), Longmucuo- Shuanghu residual basin (LSRB) and southern Qiangtang residual basin (SQRB). The NQPB can be subdivided into four paleogeography units: The Tanggula-Zangxiahe shallow and bathyal sea; The Wangquanhe- Yingshuiquan carbonate platform; The Rejuechaka-Jiangaidarina littoral- shallow sea; and Qiangtang central uplift. The above units of The NQPB possess EW trend, geomorphology high in the south and low in the north, the seawater depth northward. The basinal paleo-current direction is unidirectional, and basinal tectonic subsidence center is in accord with the depo-center, located in the Tanggula-Zangxiahe belt, north of the basin. The sedimentation and tectonic evolution of the NQPB are characterized with passive continental marginal basin. The Qiangtang central orogenic denuded area (ancient land) may be as a sedimentary materials source of the NQPB. SQRB can be divided into two units: Duoma carbonate platform and southern Qiangtang neritic-deep sea. The late Triassic tectonic paleogeography in the Qiangtang area is the framework of the "archipelagic-sea" as a whole, and it may be divided into three sub-units: northern Qiangtang back- arc foreland basin(NQFB), Longmucuo-Shuanghu residual basin(LSRB) and southern Qiangtang marginal-sea basin(SQMB). Thereinto, NQFB can be divided into five paleogeography units: the Zangxiahe-Mingjinghu bathyal basin characterized with the flysch; the Tanggula shallow-sea shelf with the fine-clastics; the Juhuashang platform with carbonates; the Tumenggela-Shuanghu coastal- delta with coal-bearing clastics and the Nadigangri- Geladandong arc with volcanics and tuffs. In transverse section, the NQFB fills is wedge-shaped, and the sediments characterized with thicker in north and thinner in south, and with double materials derived from the Ruolagangri orogenic belt in north and the Shuanghu central orogenic belt in south. The late Triassic depocenter of NQFB is located in the middle of the basin, the Yakecuo-Bandaohu-Quemocuo belt, but the subsidence center in the north, the Zangxiahe- Mingjinghu belt, and basinal tectonic subsidence center not concordant with the depo-center. Late Triassic, the SQMB may be divided into three sub-units: Xiaochaka shallow-sea; Riganpeicuo platform~ and South Qiangtang southern bathyal basin. In transverse section, the basement of the SQMB is characterized with low in the northern and southern, but high in the middle; forming wedge shaped sediments with thicker in the north and thinner in the south; the sedimentary materials derived from the Qiangtang central uplift and Nadigangri arcs in north. The late Triassic subsidence centre of the SQMB is located in the northern (Xiaochaka area), but the depocenter in the southern (Qixiancuo Suobucha area). The sedimentation and tectonic evolution of the SQMB are characterized with marginal sea.
基金supported in part by the grant of the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB2-10)the Program for Innovative Research Group of Natural Science Foundation of China (No. 40821001)
文摘Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The results of experi-ments in the field revealed that the cooling effect of a crushed rock embankment is influenced mainly by the natural con-vection in winter and shield effect in summer,the ventilation of crushed rocks,and the ground temperature regime be-neath the embankment.Consequently,these three factors should be taken into account in numerical simulations,but it is as a result of natural convection only.
基金funded by the work programs of the China Geological Survey (1212011086020)the National Natural Science Foundation of China (41272093)
文摘In this paper we present new zircon U-Pb ages,whole-rock major and trace element analyses,and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture.Our aim is to constrain the Early Permian-Late Triassic tectonic evolution of the region.Zircons from the magmatic rocks of the Tuotuohe region are euhedralsubhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.4-4.6),indicating a magmatic origin.The zircon U-Pb ages obtained using LA-ICP-MS are 281 ± 1 Ma,258 ± 1 Ma,244 ± 1 Ma,and 216 ± 1 Ma,which indicate magmatism in the Early Permian-Late Triassic.A diorite from Bashihubei (BSHN) has SiO2 =57.18-59.97 wt%,Al2O3=15.70-16.53 wt%,and total alkalis (Na2O + K2O) =4.46-6.34 wt%,typical of calc-alkaline and metaluminous series.A gabbro from Bashibadaoban (BSBDB) belongs to the alkaline series,and is poor in SiO2 (45.46-54.03 wt%) but rich in Al2O3 (16.19-17.39 wt%) and total alkalis (Na2O + K2O =5.48-6.26 wt%).The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs,and they have no obvious Eu anomaly; they have relatively low MgO contents (2.54-4.93 wt%),Mg# values of 43 to 52,and low Cr and Ni contents (8.07-33.6 ppm and 4.41-14.2 ppm,respectively),indicating they differentiated from primitive mantle magmas.They have low Nb/U,Ta/ U,and Ce/Pb ratios (1.3-9.6,0.2-0.8,and 0.1-18.1,respectively),and their initial Hf isotopic ratios range from +9.6 to +16.9 (BSHN diorite) and +6.5 to +12.6 (BSBDB gabbro),suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids.Taking all the new data together,we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian-Late Triassic:oceanic crust subduction before the Early Permian,continental collision during the Early-Middle Triassic,and post-collisional extension from the Late Triassic.
基金supported by the National Natural Science Foundation of China (Nos. 41501079 and 91647103)the self-determined Project Funded by State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZQ-43)the Foundation for Excellent Youth Scholars of NIEER, CAS
文摘This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of rubble roadbed engineering in permafrost regions. The AHP(Analytic Hierarchy Process) method is thus employed to establish the evaluation indicator system. The evaluation factor is selected by analyzing the mutual relation between the permafrost environment and roadbed engineering. Thus, a hierarchical structure model is established based on the selected evaluation indices. Each factor is weighted to determine the status in the evaluation system, and grading standards are built for providing a basis for the evaluation. Then, the fuzzy mathematical method is introduced to evaluate the measure effect of rubble roadbed engineering in permafrost regions along the Chadaer-Muli Railway. Results show that most of the permafrost roadbed is in a preferable condition(b) along the Chaidaer-Muli Railway due to rubble engineering measures. This proportion reaches to 86.1%. The proportion in good(a), general(c) and poor states(d) are 0.0%, 7.5% and 6.4%, respectively, in all the evaluation sections along the Chaidaer-Muli Railway. Ground-temperature monitoring results are generally consistent with AHP-FUZZY evaluation results. This means that the AHP-FUZZY method can be applied to evaluate the effect of rubble roadbed engineering measures in permafrost regions. The effect evaluation of engineering measures will provide timely and effective feedback information for further engineering design. The series of engineering measures will more effectively protect permafrost stability.
文摘[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.
文摘The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the decreasing of land capacity and river disconnecting. The status of water environmental degradation in this paper was analyzed based on the data and field investigation. The results indicated that the surface water area in the region has obviously decreased owing to the climate changes and human irrational use of water resources and the continuous lowering of the regional groundwater table and the steadily decreasing tendency of the flow rate in the source areas of the Yellow River.
基金supported by China earthquake scientific array exploration Southern section of North South seismic belt(201008001)Northern section of North South seismic belt(20130811)+1 种基金National Natural Science Foundation of China(41474057)Science for Earthquake Resllience of China Earthquake Administration(XH15040Y)
文摘The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.
文摘<div style="text-align:justify;"> With global warming and increased human activity, more and more ground surface areas have been affected, which leads to the creation of many problems. To understand the ecological environment changes in a typical alpine region, information on landcovers changes in the study area from 2000 to 2020 was obtained by combining remote sensing, geographic information system, and traditional statistical analysis for the Sanjiangyuan National Nature Reserve on the Qinghai-Tibet Plateau, China. The results show that the changes of surface cover in Sanjiangyuan National Nature Reserve are relatively concentrated, mainly distributed in the sections of south, northwest, central, and northeast, with the area of the changed regions and the unchanged regions being 31,127.45 km<sup>2</sup> and 271,941.37 km<sup>2</sup>, respectively. The transformation between the various types of ground landcover is mainly characterized by a shift from other types to grassland and from grassland to bare land. And the regions of change are mostly concentrated between 3500 - 4600 m in elevation. </div>
基金Supported by New-century Excellent Talent Program of Ministry of Education of China (Grant No. NCET-06-0204)National Natural Science Foundation of China (Grant No.40572085)"the 9th Five-Year Plan" of Scientific and Technological Program of CNPC (Grant No. BR95YZ2-02)
文摘Due to the complexity of geological background and the adverseness of natural geographical environment in the Qinghai-Tibet Plateau,it is very difficult to carry out petroleum geological study in this region. The Qinghai-Tibet Plateau is the only blank space of petroleum exploration on a large scale. The authors carried out the surface geochemical exploration of oil and gas in the Gangbatong-Ya'anxiang and Dongqiao-Nam Co of the Qinghai-Tibet region. Based on the data of actual detection and experiments in the studied area,the characteristics of concentration and profile distribution of the main geochemical exploration indicators(total adsorbed hydrocarbon,altered carbonate,thermal released mercury,etc.) were discussed. The origin of hydrocarbon was also discussed. Moreover,the oil and gas potential of different sections in the Qiangtang Basin and the Biru Basin were evaluated,which could provide references for the exploration and prediction of oil and gas in this region. The concentrations of total adsorbed hydrocarbons in the Ya'anxiang of Suoxian County-Zadong of Baqing County and the Jiecha-Dangxiong of Anduo County in the Qinghai-Tibet region are high,averaging 312.64 μL·kg-1 and 164.36 μL·kg-1. Their altered carbonate concentrations are relatively low,averaging 0.11% and 0.56%. Their concentrations of thermal released mercury are relatively high,averaging 13.09×10-9 and 1.94×10-9. Geochemical exploration results in fact reflect hydrocarbon information in the underground,which are mainly petroleum associated gas and over-matured cracking gas. The Jiecha-Charenluma and the Xiamaya'ertong-Suoba sections in the Qiangtang Basin are the most favorable ones for oil and gas and the Ekou-Zadong section is relatively favorable one,while the Nam Co and the Zigetangcuo-Dongqiao sections in the Biru Basin are the favorable ones for oil and gas,and the Jiang Co-Nading Co and the Ya'anxiang-Ya'ertong sections are relatively favorable ones.
文摘Over 40 a observed temperature data in 172 stations in China and historical proxy data were analyzed. Evidence suggested that during 1980-1994, the warmest year appeared first in southeastern part of the Qinghai_Xizang (Tibet) Plateau (henceforth SETP) and then gradually spread northwards and eastwards to eastern China. The climatic change on century time scale in recent 600 a shows 3 relatively warm and clod stages in China. Each warm and cold stage appeared first in Tibet Plateau (henceforth TP) and then in the Qilian Mountains, then in the eastern parts of China. The warm and cold stages in TP were 10-60 a earlier than in the eastern China. The facts show that TP is a pilot region of climatic fluctuation in China on the time scale shorter than 10\+3a.