期刊文献+
共找到52,818篇文章
< 1 2 250 >
每页显示 20 50 100
Spatial Coupling Relationship and Driving Mechanism of Population and Economy in Rural Areas in Qinling-Daba Mountains,China 被引量:3
1
作者 XIAO Jie QIAO Jiajun +2 位作者 HAN Dong LIU Yang PAN Tao 《Chinese Geographical Science》 SCIE CSCD 2023年第5期779-795,共17页
Addressing the issue of the healthy and coordinated development of the population and economic factors in rural areas will not only help consolidate and expand the achievements of poverty alleviation,but will also lay... Addressing the issue of the healthy and coordinated development of the population and economic factors in rural areas will not only help consolidate and expand the achievements of poverty alleviation,but will also lay a foundation for comprehensive rural revitalization.In this paper,the spatial coupling relationship between the population and economic factors in rural areas in the QinlingDaba Mountains,China,is explored to provide a reference for rural revitalization and regional sustainable development in poverty areas.Sixty-eight county units in rural areas in the Qinling-Daba Mountains,as well as the population and economic factors in rural areas,are used to study the spatial coupling relationship between population and economy,as well as the driving mechanism,in rural areas in the Qinling-Daba Mountains from 2010 to 2020.The results show that a population contraction phenomenon occurred in the rural areas in the Qinling-Daba Mountains,and the spatial agglomeration trends of the population and economic factors were consistent.The agglomeration was mainly located in the suburban areas of the municipal area,and the agglomeration degree was significantly higher in these areas than in other areas.In terms of the spatial distribution,the economic development level of the rural areas in the northeastern part of the Qinling-Daba Mountains was generally higher than that in the central and western parts,and the unbalanced trends of the population and economic spatial differentiation in the eastern and western regions were significant.The spatial coupling relationship between the population and economy changed from coordinated development to economic advancement.This was mainly due to the mutual restriction and joint actions of the industrial structure,capital situation,natural environment,policies,and institutional regulations,among which the industrial structure and capital status had significant effects. 展开更多
关键词 rural poverty population distribution economic development pattern spatial coupling influencing factors rural revitalization qinling-daba mountains China
下载PDF
Sustainable Livelihood of Ecological Migrants in Qinling-Daba Mountains of Southern Shaanxi 被引量:2
2
作者 王娜 张应辉 《Agricultural Science & Technology》 CAS 2017年第8期1563-1566,共4页
The severe environment in Qinling-Daba Mountains has made it not suitable for the long-term residence due to the large amounts of "ecological migrants", and these migrants have moved out of the mountains and changed... The severe environment in Qinling-Daba Mountains has made it not suitable for the long-term residence due to the large amounts of "ecological migrants", and these migrants have moved out of the mountains and changed their economic and life styles, resulting in many problems. In this paper, the problems of "ecological migrants" were analyzed, including the education problem, different life styles, incomplete national protecting measures and policies, with the aim to provide governments with constructive suggestions for the establishment of the education and training system, acceleration of the development of industries (especially the tertiary industry, subsidiary business), and labor transferring, increasing the incomes of "ecological migrants", and making the "ecological migrants" have the financial resources for a long time, thereby better stabilizing the "ecological migrants". 展开更多
关键词 qinling-daba mountains Ecological migrant Sustainable livelihoods
下载PDF
The value of vegetation ecosystem services:a case of Qinling-Daba Mountains 被引量:20
3
作者 REN Zhiyuan,ZHANG Yanfang,LI Jing(College of Tourism and Environment, Shaanxi Normal University, Xi’an 710062, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第2期195-200,共6页
According to differences in vegetation types and their coverage, combining the latest research, using theory and method on the value of vegetation ecosystem services, this paper not only calculated goods... According to differences in vegetation types and their coverage, combining the latest research, using theory and method on the value of vegetation ecosystem services, this paper not only calculated goods produced by different types of vegetation but also estimated the value of various vegetation ecosystem services and set up database, GIS and eco-account of vegetation ecosystem. The result was as follows: the value of vegetation's primary productivity, soil and fertility conservation, water conservation, CO 2 fixation and O 2 release was 199.6 billion yuan/a, 22.64 billion yuan/a, 22.66 billion yuan/a, 352.24 billion yuan/a and 374.19 billion yuan/a, respectively. The total value of ecosystem services was 968.33 billion yuan/a. The temperate deciduous broad-leaved forest had the highest contribution rate, accounting for 16.42%. The result of value can reflect regional reality more exactly. 展开更多
关键词 regional vegetation ecosystem services ecological economic value qinling-daba mountains CLC number:F062.2 Q948.1
下载PDF
Latitudinal differentiation and patterns of temperate and subtropical plants in the Qinling-Daba Mountains 被引量:2
4
作者 LIU Junjie ZHANG Baiping +4 位作者 YAO Yonghui ZHANG Xinghang WANG Jing YU Fuqin LI Jiayu 《Journal of Geographical Sciences》 SCIE CSCD 2023年第5期907-923,共17页
Geographically,the Qinling-Daba Mountains serve as the main body of the north-south transitional zone of China.However,the transitional patterns of their plant species still need to be clarified.This study analyzed la... Geographically,the Qinling-Daba Mountains serve as the main body of the north-south transitional zone of China.However,the transitional patterns of their plant species still need to be clarified.This study analyzed latitudinal variations of plant species richness,relative importance values(RIV),and plant species abundance based on plant community field survey data for 163 sample sites along three north-south transect lines in the eastern,middle,and western parts of the study areas.The difference in RIV between subtropical and temperate species(SND-RIV)was selected to reveal the latitudinal interlacing pattern of northern and southern plant species.Along the eastern(Sanmenxia-Yichang),middle(Xi’an-Dazhou),and western(Tianshui-Guangyuan)transects,the richness and RIV of subtropical plant species increased while those of temperate plant species decreased from north to south.In the eastern transect,temperate plant species richness and RIV were the highest at Shennongjia and Funiu Mountain,respectively,because of their high elevations.In the middle transect,subtropical plant species richness and RIV were the highest in the Daba Mountains.In the western transect,richness and RIV were higher for subtropical than temperate plant species from the south of Longnan.The crisscrossing areas of northern and southern plant species were∼180 km,∼100 km,and∼60 km wide for the eastern,middle,and western transects,respectively,showing a narrowing trend from east to west.For the eastern and western transects,decreases in subtropical plant species distribution from south to north could be attributed to a decrease in mean annual precipitation in the same direction.However,for the middle transect,mean annual temperature had a slightly greater influence on plant species’latitudinal distribution than the moisture index.This study provides a more solid scientific basis for future investigations of this key geographical boundary in China. 展开更多
关键词 latitudinal plants variation north-south climate dividing line north-south transition zone of China qinling-daba mountains transition pattern
原文传递
Dendroclimatological study of Sabina saltuaria and Abies faxoniana in the mixed forests of the Qionglai Mountains,eastern Tibetan Plateau 被引量:1
5
作者 Teng Li Jianfeng Peng +3 位作者 Tsun Fung Au Jingru Li Jinbao Li Yue Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期72-82,共11页
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e... Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau. 展开更多
关键词 Tree-ring analysis Mixed forests DENDROCLIMATOLOGY Qionglai mountains
下载PDF
Bird species composition and conservation challenges in the Gaoligong Mountains, one of the most diverse bird areas in the world 被引量:1
6
作者 Fei Wu Jian-Yun Gao +13 位作者 Dao Yan Le Yang Lu-Ming Liu Shun-Yu Yao Chang-Sheng Zuo Jun Sun Ge Gao Jian-Yong Su Li Luo Ying-Chun Li Ming Liu Yuan-Fang Hu Ming Wei Xiao-Jun Yang 《Zoological Research(Diversity and Conservation)》 2024年第1期20-50,共31页
The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird su... The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research. 展开更多
关键词 BIRDS Gaoligong mountains Zoogeographic region Conservation challenge
下载PDF
Differential response of radial growth and δ^(13)C in Qinghai spruce(Picea crassifolia) to climate change on the southern and northern slopes of the Qilian Mountains in Northwest China 被引量:1
7
作者 Li Qin Huaming Shang +4 位作者 Weiping Liu Yuting Fan Kexiang Liu Tongwen Zhang Ruibo Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期205-218,共14页
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q... Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change. 展开更多
关键词 Tree rings Qinghai spruce(Picea crassifolia Kom.) Stable carbon isotope(δ^(13)C) Qilian mountains:Climate change
下载PDF
Exploring the unique biophysical characteristics and ecosystem services of mountains: A review
8
作者 Gebrekidan Worku TEFERA Ram L.RAY Amare BANTIDER 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3584-3597,共14页
Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within ... Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within and beyond the mountains.Despite their significance,comprehensive studies that thoroughly characterize the ecosystem services of mountains are lacking.Such research is crucial to advance scientific understanding of mountain characteristics and ecosystem services.This study investigates mountain regions’unique characteristics and ecosystem services using global datasets such as the U.S.Geological Survey(USGS),the Global Mountain Biodiversity Assessment(GMBA),NASA EARTHDATA,and other relevant databases and literature review.The focus was to explore unique physiographic and socio-economic characteristics and ecosystem services provided by mountains.The results indicate that mountain ecosystems are pivotal in offering provisional,regulatory,and supporting ecosystem services on Earth.Despite their limited geographical area,these ecosystems supply substantial amounts of freshwater to communities living within and downstream of mountainous regions.Additionally,mountain ecosystems serve as global biodiversity hotspots,harboring a significant proportion of the world's species.However,mountain ecosystems face numerous natural and anthropogenic challenges,including climate change,habitat destruction,and resource overexploitation.Current efforts towards sustainable mountain development are inadequate.Enhanced scientific research and targeted policy measures are essential to address these challenges,protect mountain biodiversity,and ensure the continuous provision of vital ecosystem services. 展开更多
关键词 mountains Ecosystems services BIODIVERSITY FRESHWATER Cultural services
下载PDF
Climate warming is significantly influenced by rising summer maximum temperatures: insights from tree-ring evidence of the Western Tianshan Mountains, China
9
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期47-59,共13页
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c... As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains Temperature change Climate warming
下载PDF
Temperature trends and its elevation-dependent warming over the Qilian Mountains
10
作者 ZHAO Peng HE Zhibin +2 位作者 MA Dengke WANG Wen QIAN Lihui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期500-510,共11页
Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,deg... Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon. 展开更多
关键词 Climate change Qilian mountains Warming rates DTR Elevation-dependent warming
下载PDF
Climate warming is significantly influenced by rising summer maximum temperatures:insights from tree-ring evidence of the Western Tianshan Mountains,China
11
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期142-154,共13页
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con... As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains Temperature change Climate warming
下载PDF
Using satellite-derived land surface temperatures to clarify the spatiotemporal warming trends of the Alborz Mountains in northern Iran
12
作者 ROSHAN Gholamreza SARLI Reza +2 位作者 GHANGHERMEH Abdolazim TAHERIZADEH Mehrnoosh NIKNAM Arman 《Journal of Mountain Science》 SCIE CSCD 2024年第2期449-469,共21页
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects... The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July. 展开更多
关键词 Global warming mountainous areas Lapse rate Surface air temperatures ALBORZ
下载PDF
Viscoelastic stress change from the 1931 M_(w)7.8 Fuyun earthquake and its impacts on seismic activity around the Altai mountains
13
作者 Yali Shao jiankun He +1 位作者 Xinguo Wang Youjia Zhao 《Geodesy and Geodynamics》 EI CSCD 2024年第4期326-337,共12页
The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt w... The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt was affected by stress interaction among different active faults, we calculate the Coulomb failure stress change(ΔCFS) induced by the Fuyun earthquake due to coseismic deformation of the elastic crust and postseismic viscoelastic relaxation of the lower crust and upper mantle. Numerical results show that the total ΔCFS at a 10-km depth produced by the Fuyun earthquake attains approximately 0.015-0.134 bar near the epicenter, and just before the occurrence of the 2003 M_(w)7.2 Chuya earthquake, which distances about 400 km away from the Fuyun earthquake. Among the increased ΔCFS,viscoelastic relaxation from 1931 to 2003 contributes to approximately 0.014-0.131 bar, accounting for>90% of the total ΔCFS. More importantly, we find that for the recorded seismicity in the region with a radius of about 270 km to the Fuyun earthquake from 1970 to 2018, the percentage of earthquakes that fall in positive lobes of ΔCFS resolved on the NNW-SSE Fuyun strike-slip fault, on the NWW-SEE Irtysh strike-slip fault, and on the NW-SE Kurti reverse fault is up to 67.22%-91.36%. Therefore, the predictedΔCFS suggests that the impact of the 1931 M_(w)7.8 Fuyun earthquake on seismic activity around the Altai mountains is still significant as to hasten occurrence of the 2003 M_(w)7.2 Chuya earthquake at a relatively far distance and to trigger its aftershocks in the near-field even after several decades of the mainshock. 展开更多
关键词 Altai mountains Fuyunearthquake Coulomb failure stress change Viscoelasticrelaxation Seismic activity
下载PDF
Quantifying the impact of earthquakes and geological factors on spatial heterogeneity of debris-flow prone areas:A case study in the Hengduan Mountains
14
作者 HU Xudong SHEN Yitong +6 位作者 HU Kaiheng XU Wennian LIU Daxiang HE Songtang GAO Jiazhen WEI Li LIU Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1522-1533,共12页
Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significan... Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies. 展开更多
关键词 debris-flow prone areas causal factors GIS-based method spatial heterogeneity Hengduan mountains
下载PDF
Height-diameter models for King Boris fir(Abies borisii regis Mattf.) and Scots pine(Pinus sylvestris L.) in Olympus and Pieria Mountains, Greece
15
作者 Dimitrios I.RAPTIS Dimitra PAPADOPOULOU +3 位作者 Angeliki PSARRA Athanasios A.FALLIAS Aristides G.TSITSANIS Vassiliki KAZANA 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1475-1490,共16页
In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonl... In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonlinear functions for height prediction were tested in terms of their fitting ability against samples of Abies borisii regis and Pinus sylvestris trees from mountainous forests in central Greece. The fitting procedure was based on generalized nonlinear weighted regression. At the final stage, a five-quantile nonlinear height-diameter model was developed for both species through a quantile regression approach, to estimate the entire conditional distribution of tree height, enabling the evaluation of the diameter impact at various quantiles and providing a comprehensive understanding of the proposed relationship across the distribution. The results clearly showed that employing the diameter as the sole independent variable, the 3-parameter Hossfeld function and the 2-parameter N?slund function managed to explain approximately 84.0% and 81.7% of the total height variance in the case of King Boris fir and Scots pine species, respectively. Furthermore, the models exhibited low levels of error in both cases(2.310m for the fir and 3.004m for the pine), yielding unbiased predictions for both fir(-0.002m) and pine(-0.004m). Notably, all the required assumptions for homogeneity and normality of the associated residuals were achieved through the weighting procedure, while the quantile regression approach provided additional insights into the height-diameter allometry of the specific species. The proposed models can turn into valuable tools for operational forest management planning, particularly for wood production and conservation of mountainous forest ecosystems. 展开更多
关键词 Generalized nonlinear weighted regression Monte Carlo cross-validation mountainous ecosystems Quantile regression Central Greece
下载PDF
Climate-Vegetation Coverage Interactions in the Hengduan Mountains Area, Southeastern Tibetan Plateau, and Their Downstream Effects
16
作者 Congxi FANG Jinlei CHEN +4 位作者 Chaojun OUYANG Lu WANG Changfeng SUN Quan ZHANG Jun WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期701-716,共16页
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ... Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate. 展开更多
关键词 Hengduan mountains Area normalized difference vegetation index climate change net heat flux downstream effects
下载PDF
Surface air temperature change in the Wuyi Mountains,southeast China
17
作者 QIN Yihui WEI Yuxing +6 位作者 LU Jiayi MAO Jiahui CHEN Xingwei GAO Lu CHEN Ying LIU Meibing DENG Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1992-2004,共13页
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ... Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains. 展开更多
关键词 Climate change Surface air temperature Temporal and spatial changes Mann-Kendall nonparametric test Wuyi mountains
下载PDF
Vegetation characteristics and soil properties of artificially remediated grasslands:The case study of the Shimenhe mining area in Qilian Mountains,northwest China
18
作者 XiaoMei Yang Qi Feng Meng Zhu 《Research in Cold and Arid Regions》 CSCD 2024年第4期190-200,共11页
The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem... The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas. 展开更多
关键词 Alpine mining area grassland Grassland ecosystem Mine restoration Plant characteristics Soil properties Qilian mountains
下载PDF
Effect of thinning intensity on the carbon sequestration of natural mixed coniferous and broadleaf forests in Xiaoxing'an Mountains, China
19
作者 Hangfeng Qu Xibin Dong +5 位作者 Hui Liu Baoshan Zhang Tong Gao Yuan Meng Yunze Ren Ying Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期198-209,共12页
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa... To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China. 展开更多
关键词 Thinning intensity Xiaoxing’an mountains China Natural mixed coniferous and broadleaf forest Carbon sequestration
下载PDF
Finer topographic data improves distribution modeling of Picea crassifolia in the northern Qilian Mountains
20
作者 ZHANG Xiang GAO Linlin +3 位作者 LUO Yu YUAN Yiyun MA Baolong DENG Yang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3306-3317,共12页
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha... The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance. 展开更多
关键词 Species distribution modeling Picea crassifolia High resolution topographic data Climate change Qilian mountains Nature Reserve Climate scenarios
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部