The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-inv...The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.展开更多
The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-i...The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.展开更多
Different function spaces have certain inclusion or equivalence relations. In this paper, the author introduces a class of Möbius-invariant Banach spaces QK,0 (p,q) of analytic function on the unit ball of Cn...Different function spaces have certain inclusion or equivalence relations. In this paper, the author introduces a class of Möbius-invariant Banach spaces QK,0 (p,q) of analytic function on the unit ball of Cn, where K:(0,∞)→[0,∞) are non-decreasing functions and 0P∞, p/2-n-1q∞, studies the inclusion relations between QK,0 (p,q) and a class of B0α spaces which was known before, and concludes that QK,0 (p,q) is a subspace of B0(q+n+1)/p, and the sufficient and necessary condition on kernel function K(r) such that QK,0 (p,q)= B0(q+n+1)/p.展开更多
在文献[1]中,Sharma A K讨论了Bergman空间Bloch型空间六种算子M_ψC_φD、M_ψDC_φ、C_φM_ψD、DM_ψC_φ、C_φDM_ψ、DC_φM_ψ.受此启发,本文研究Q_K(p,q)空间到Bloch型空间上的Stevi?-Sharma算子的有界性和紧性,并给出了当p≠q+2...在文献[1]中,Sharma A K讨论了Bergman空间Bloch型空间六种算子M_ψC_φD、M_ψDC_φ、C_φM_ψD、DM_ψC_φ、C_φDM_ψ、DC_φM_ψ.受此启发,本文研究Q_K(p,q)空间到Bloch型空间上的Stevi?-Sharma算子的有界性和紧性,并给出了当p≠q+2时Q_K(p,q)空间到Bloch型空间上的Stevi?-Sharma算子是有界算子或紧算子的充分必要条件.本文的结果推广了文献[2,3]中的部分结果.展开更多
基金Supported by NSF of China (10671115)RFDP of China (20060560002)NSF of Guangdong Province of China (06105648)
文摘The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.
基金Supported by the National Natural Science Foundation of China(10671147)Science Foundation of Ministry of Education of China(208081)the Natural Science Foundation of Henan(2008B110006)
基金Supported by NSF of China (10671115)+2 种基金 RFDP of China (20060560002) NSF of Guangdong Province of China (06105648)
文摘The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.
文摘Different function spaces have certain inclusion or equivalence relations. In this paper, the author introduces a class of Möbius-invariant Banach spaces QK,0 (p,q) of analytic function on the unit ball of Cn, where K:(0,∞)→[0,∞) are non-decreasing functions and 0P∞, p/2-n-1q∞, studies the inclusion relations between QK,0 (p,q) and a class of B0α spaces which was known before, and concludes that QK,0 (p,q) is a subspace of B0(q+n+1)/p, and the sufficient and necessary condition on kernel function K(r) such that QK,0 (p,q)= B0(q+n+1)/p.
文摘在文献[1]中,Sharma A K讨论了Bergman空间Bloch型空间六种算子M_ψC_φD、M_ψDC_φ、C_φM_ψD、DM_ψC_φ、C_φDM_ψ、DC_φM_ψ.受此启发,本文研究Q_K(p,q)空间到Bloch型空间上的Stevi?-Sharma算子的有界性和紧性,并给出了当p≠q+2时Q_K(p,q)空间到Bloch型空间上的Stevi?-Sharma算子是有界算子或紧算子的充分必要条件.本文的结果推广了文献[2,3]中的部分结果.