针对IEEE802.11e Medium Access Control层的QoS机制高负载时存在远端节点冲突和低优先级业务资源被耗尽的问题,提出在牺牲较小带宽的基础上增加一条忙音信道,取代CTS帧在数据信道上的广播,减少远端节点的冲突.仿真结果表明,该方案具有...针对IEEE802.11e Medium Access Control层的QoS机制高负载时存在远端节点冲突和低优先级业务资源被耗尽的问题,提出在牺牲较小带宽的基础上增加一条忙音信道,取代CTS帧在数据信道上的广播,减少远端节点的冲突.仿真结果表明,该方案具有较小的冲突概率,有效地减少了远端节点冲突.同时提出一个解决公平性问题的新思路:在避退时间发送忙音抢占信道,以期提高低优先级业务的接入概率.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Si...In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input(NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square(RLS) algorithm and using minimum variance control(MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller(DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads.展开更多
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha...This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole pe...The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.展开更多
System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the...System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.展开更多
This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and cl...This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and classified using an intelligent service-aware classification model. Drawing on Control Theory, network traffic can be controlled with a self-adaptive QoS control mechanism that has side-road collaboration. In this architecture, perception, analysis, correlation, feedback, decision making, allocation, and implementation QoS mechanisms are created automatically. These mechanisms can adjust resource allocation, adapt to a changeable network environment, optimize end-to-end performance of the network, and ensure QoS.展开更多
The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, sel...The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.展开更多
This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video st...This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video streams in terms of their bandwidth utilization time (medium time), whereas the traffic control scheme maintains the communication quality of applications permitted admission by restricting other traffic. Owing to the use of contention-based access, a conventional scheme without admission control will degrade the communication quality when the number of terminals using high-priority applications increases. Moreover, only the capabilities (i.e., frame and sequence procedures) of admission control are defined in the IEEE 802.11e standard;the detailed usage in terms of the application characteristics is not specified, and it may be difficult to achieve a sufficient level of quality of service (QoS). The proposed schemes achieve the optimum QoS for actual services. The software used in the proposed schemes was implemented into hardware at the access point, and was evaluated experimentally. Based on the evaluation results, excellent performances with high QoS applications were obtained.展开更多
More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the networ...More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the network. At the radio access level, available resources are severely limited and the degree of traffic aggregation is not significant, thus rendering the DiffServ principles less effective. In this paper we present a suitable hybrid QoS architecture framework to address the problem. At the wireless access end, the local QoS mechanism is designed in the context of IEEE 802.11 WLAN with 802.11e QoS extensions;so streams of those session-based applications are admitted, established according to the traffic profile they require, and guaranteed. As the core in the Admission Control of the hybrid QoS architecture, the Fair Intelligent Congestion Control (FICC) algorithm is applied to provide fairness among traffic aggregates and control congestion at the bottleneck interface between the wireless link and the network core via mechanisms of packet scheduling, buffer management, feedback and adjustments. It manages effectively the overloading scenario by preventing traffic violation from uncontrolled traffic, and providing guarantee to the priority traffic in terms of guaranteed bandwidth allocation and specified delay.展开更多
The advances in MIMO systems and networking technologies introduced a revolution in recent times, especially in wireless and wired multi-cast (multi-point-to-multi-point) transmission field. In this work, the distribu...The advances in MIMO systems and networking technologies introduced a revolution in recent times, especially in wireless and wired multi-cast (multi-point-to-multi-point) transmission field. In this work, the distributed versions of self-tuning proportional integral plus derivative (SPID) controller and self-tuning proportional plus integral (SPI) controller are described. An explicit rate feedback mechanism is used to design a controller for regulating the source rates in wireless and wired multi-cast networks. The control parameters of the SPID and SPI controllers are determined to ensure the stability of the control loop. Simulations are carried out with wireless and wired multi-cast models, to evaluate the performance of the SPID and SPI controllers and the ensuing results show that SPID scheme yields better performance than SPI scheme;however, it requires more computing time and central processing unit (CPU) resources.展开更多
Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural n...Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.展开更多
The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is w...The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications.展开更多
In this paper we discuss how to select appropriate source and channel rate for transporting variable bit-rate (VBR) compressed video over QoS (quality of service)-assured channels. We first formulate it as an optimal ...In this paper we discuss how to select appropriate source and channel rate for transporting variable bit-rate (VBR) compressed video over QoS (quality of service)-assured channels. We first formulate it as an optimal control problem of discrete linear time-delay system. Then the discrete maximum principle is used to get the optimal control. Compared to traditional solutions, the proposed algorithm is designed for the coder with continuous output rate, and can work without special requirements for the encoder and decoder buffer sizes. Theoretical analysis and experimental results show that the proposed algorithm has lower space and time complexity. Our solution can be used in both off-line and on-line coding.展开更多
文摘针对IEEE802.11e Medium Access Control层的QoS机制高负载时存在远端节点冲突和低优先级业务资源被耗尽的问题,提出在牺牲较小带宽的基础上增加一条忙音信道,取代CTS帧在数据信道上的广播,减少远端节点的冲突.仿真结果表明,该方案具有较小的冲突概率,有效地减少了远端节点冲突.同时提出一个解决公平性问题的新思路:在避退时间发送忙音抢占信道,以期提高低优先级业务的接入概率.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input(NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square(RLS) algorithm and using minimum variance control(MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller(DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads.
文摘This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
文摘The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.2021JJLH0078)the Science and Technology Commission of Shanghai Municipality (Grant No.19DZ1207300)the Major Projects of Strategic Emerging Industries in Shanghai。
文摘System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
基金funded by the National High Technology Research and Development Planning ("863"Project) under Grant No. 2006AA01Z232, 2009AA01Z212, 2009AA01Z202the National Natural Science Foundation Project under Grant No. 61003237
文摘This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and classified using an intelligent service-aware classification model. Drawing on Control Theory, network traffic can be controlled with a self-adaptive QoS control mechanism that has side-road collaboration. In this architecture, perception, analysis, correlation, feedback, decision making, allocation, and implementation QoS mechanisms are created automatically. These mechanisms can adjust resource allocation, adapt to a changeable network environment, optimize end-to-end performance of the network, and ensure QoS.
文摘The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.
文摘This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video streams in terms of their bandwidth utilization time (medium time), whereas the traffic control scheme maintains the communication quality of applications permitted admission by restricting other traffic. Owing to the use of contention-based access, a conventional scheme without admission control will degrade the communication quality when the number of terminals using high-priority applications increases. Moreover, only the capabilities (i.e., frame and sequence procedures) of admission control are defined in the IEEE 802.11e standard;the detailed usage in terms of the application characteristics is not specified, and it may be difficult to achieve a sufficient level of quality of service (QoS). The proposed schemes achieve the optimum QoS for actual services. The software used in the proposed schemes was implemented into hardware at the access point, and was evaluated experimentally. Based on the evaluation results, excellent performances with high QoS applications were obtained.
文摘More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the network. At the radio access level, available resources are severely limited and the degree of traffic aggregation is not significant, thus rendering the DiffServ principles less effective. In this paper we present a suitable hybrid QoS architecture framework to address the problem. At the wireless access end, the local QoS mechanism is designed in the context of IEEE 802.11 WLAN with 802.11e QoS extensions;so streams of those session-based applications are admitted, established according to the traffic profile they require, and guaranteed. As the core in the Admission Control of the hybrid QoS architecture, the Fair Intelligent Congestion Control (FICC) algorithm is applied to provide fairness among traffic aggregates and control congestion at the bottleneck interface between the wireless link and the network core via mechanisms of packet scheduling, buffer management, feedback and adjustments. It manages effectively the overloading scenario by preventing traffic violation from uncontrolled traffic, and providing guarantee to the priority traffic in terms of guaranteed bandwidth allocation and specified delay.
文摘The advances in MIMO systems and networking technologies introduced a revolution in recent times, especially in wireless and wired multi-cast (multi-point-to-multi-point) transmission field. In this work, the distributed versions of self-tuning proportional integral plus derivative (SPID) controller and self-tuning proportional plus integral (SPI) controller are described. An explicit rate feedback mechanism is used to design a controller for regulating the source rates in wireless and wired multi-cast networks. The control parameters of the SPID and SPI controllers are determined to ensure the stability of the control loop. Simulations are carried out with wireless and wired multi-cast models, to evaluate the performance of the SPID and SPI controllers and the ensuing results show that SPID scheme yields better performance than SPI scheme;however, it requires more computing time and central processing unit (CPU) resources.
文摘Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.
文摘The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications.
文摘In this paper we discuss how to select appropriate source and channel rate for transporting variable bit-rate (VBR) compressed video over QoS (quality of service)-assured channels. We first formulate it as an optimal control problem of discrete linear time-delay system. Then the discrete maximum principle is used to get the optimal control. Compared to traditional solutions, the proposed algorithm is designed for the coder with continuous output rate, and can work without special requirements for the encoder and decoder buffer sizes. Theoretical analysis and experimental results show that the proposed algorithm has lower space and time complexity. Our solution can be used in both off-line and on-line coding.