期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Remark on Computing the Tame Kernel of Quadratic Imaginary Fields
1
作者 Xue Jun GUO Guang Tian SONG Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第3期513-516,共4页
In this paper, we discuss a method to compute the tame kernel of a number field. Confining ourselves to an imaginary quadratic field, we prove that _υ:K_2~S F/K_2~S F→k~* is bijective when N_υ>8δ_D^6.
关键词 Tame kernel quadratic imaginary fields GTT Theorem
原文传递
An Additive Function on a Ring of Integers in the Imaginary Quadratic Field Q(d^(1/2))with Class-Number One
2
作者 Cai Tianxin Department of Mathematics,Hangzhou University Hangzhou,310028 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1995年第1期68-73,共6页
Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup... Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup>N<sup>α</sup>(p)with a fixed α】0,where the asterisk means that the summation is over the non-associate prime divisors p of an integer α in Q((1/2)d),N(α)is the norm of α.In this paper we obtain the asymptotic formula of ∑<sub>N</sub>(α)≤<sub>x</sub> <sup>*</sup>B<sub>α</sub>(α)in the case where the class-number of Q((1/2)d)is one. 展开更多
关键词 MATH An Additive Function on a Ring of Integers in the imaginary quadratic Field Q
原文传递
Gauss Sum of Index 4:(2)Non-cyclic Case 被引量:1
3
作者 Jing YANG Shi Xin LUO Ke Qin FENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第3期833-844,共12页
Assume that m ≥ 2, p is a prime number, (m,p(p - 1)) = 1,-1 not belong to 〈p〉 belong to (Z/mZ)^* and [(Z/mZ)^*:〈p〉]=4.In this paper, we calculate the value of Gauss sum G(X)=∑x∈F^*x(x)ζp^T(x)... Assume that m ≥ 2, p is a prime number, (m,p(p - 1)) = 1,-1 not belong to 〈p〉 belong to (Z/mZ)^* and [(Z/mZ)^*:〈p〉]=4.In this paper, we calculate the value of Gauss sum G(X)=∑x∈F^*x(x)ζp^T(x) over Fq,where q=p^f,f=φ(m)/4,x is a multiplicative character of Fq and T is the trace map from Fq to Fp.Under our assumptions,G(x) belongs to the decomposition field K of p in Q(ζm) and K is an imaginary quartic abelian unmber field.When the Galois group Gal(K/Q) is cyclic,we have studied this cyclic case in anotyer paper:"Gauss sums of index four:(1)cyclic case"(accepted by Acta Mathematica Sinica,2003).In this paper we deal with the non-cyclic case. 展开更多
关键词 Gauss sum Stickelberger Theorem Davenport-Hawse formula class number of imaginary quadratic field
原文传递
8-rank of the class group and isotropy index
4
作者 LU Qing 《Science China Mathematics》 SCIE CSCD 2015年第7期1433-1444,共12页
Suppose F = Q(√-p1 pt) is an imaginary quadratic number field with distinct primes p1,..., pt,where pi≡ 1(mod 4)(i = 1,..., t- 1) and pt ≡ 3(mod 4). We express the possible values of the 8-rank r8 of the class grou... Suppose F = Q(√-p1 pt) is an imaginary quadratic number field with distinct primes p1,..., pt,where pi≡ 1(mod 4)(i = 1,..., t- 1) and pt ≡ 3(mod 4). We express the possible values of the 8-rank r8 of the class group of F in terms of a quadratic form Q over F2 which is defined by quartic symbols. In particular,we show that r8 is bounded by the isotropy index of Q. 展开更多
关键词 imaginary quadratic field class group 8-rank isotropy index Redei matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部