The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.展开更多
Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate...Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate values of the electric quadrupole moments of^2P3/2,^2D3/2,5/2,and^2F5/2,7/2 states which agree well with experimental values.The important role of the electronic correlation to the electric quadrupole moments is investigated.Our calculations indicate the early dispute of the electric quadrupole moment of the Yb^+(2F7/2)state for which the measured and theoretical values have a large discrepancy.These electric quadrupole moment values can help us to determine the electric quadrupole shifts in start-of-the-art experiments of the Yb+ion.展开更多
Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock...Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock(MCDHF)method, we calculated the hyperfine interaction constants, the Landég-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+,61Ni12+,61Ni14+, and61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions(see Fig. 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics(QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.展开更多
The Harmonic OseiUator Quadruple Pairing Cranking Hartree-Fock-Bogoliubov(HFB)theoreti-cal model is established and applied to the superdeforrned(SD)rotational states.The reduction and col-lapse of the pairing fie...The Harmonic OseiUator Quadruple Pairing Cranking Hartree-Fock-Bogoliubov(HFB)theoreti-cal model is established and applied to the superdeforrned(SD)rotational states.The reduction and col-lapse of the pairing fields,including Y<sub>20</sub>,Y<sub>21</sub> and Y<sub>22</sub> fields at superdeformation and high spins,are stud-ied.It is found that the correct rotational frequency ω-dependence of the pairing fields is crucial for thetheory to reproduce the rising behavior of dynamic moment of inertia J<sup>(2)</sup> observed in the A=190 region,and the Y<sub>21</sub> pairing contributes significantly to reducing the rising rate of J<sup>(2)</sup> and thus may strongly influ-enee the collective properties of SD nuclei.The calculated J<sup>(2)</sup> of <sup>192</sup>H8 is in good agreement with the ex-perimental data up to (?)ω=0.32 MeV.展开更多
A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativ...A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.展开更多
The magnetic and quadrupole moments of the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states are calculated within the QCD light-cone sum rules.The compact diquark-antidiquark interpolating currents and the di...The magnetic and quadrupole moments of the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states are calculated within the QCD light-cone sum rules.The compact diquark-antidiquark interpolating currents and the distribution amplitudes of the on-shell photon are used to extract the magnetic and quadrupole moments of these states.The magnetic moments are acquired asμZ_(c)=0.50+0.22−0.22μN,μZ_(c)^(1)=1.22+0.34−0.32μN,andμZ_(c)^(2)=2.40+0.53−0.48μN for the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states,respectively.The magnetic moments evaluated for the Z_(c)4020)+,Z_(c)(4050)+,and Z_(c)(4600)+states are sufficiently large to be experimentally measurable.The magnetic moment is an excellent platform for studying the internal structure of hadrons governed by the quark-gluon dynamics of QCD because it is the leading-order response of a bound system to a weak external magnetic field.The quadrupole moment results are DZ_(c)=(0.20+0.05−0.04)×10^(−3)fm^(2),DZ_(c)^(1)=(0.57+0.07−0.08)×10^(−3)fm^(2),and DZ_(c)^(2)=(0.30+0.05−0.04)×10^(−3)fm^(2)for the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states,respectively.We obtain a non-zero,but small,value for the quadrupole moments of the Z_(c)states,which indicates a non-spherical charge distribution.The nature and internal structure of these states can be elucidated by comparing future experimental data on the magnetic and quadrupole moments of the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states with the results of the present study.展开更多
A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is...A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is Kerr-like. Its Taylor expansion form coincides with second order quadrupole metrics with slow rotation already found. Moreover, it can be transformed to an improved Hartle-Thorne metric, which guarantees its validity to be useful in studying compact object, and it is possible to find an inner solution.展开更多
In the present work we calculate the energies,quadrupole moments,and electric field gradients(EFGs) of molecules C2,N2,and O2 based on the DIRRCI method with basis aug-cc-pVTZ-DK.We prove that the quadratic force co...In the present work we calculate the energies,quadrupole moments,and electric field gradients(EFGs) of molecules C2,N2,and O2 based on the DIRRCI method with basis aug-cc-pVTZ-DK.We prove that the quadratic force constant k2 is the product of charge and EFG at its equilibrium nuclear distance.The dipole charge distributions for these symmetrical molecules are all in equilibrium,however,the quadrupole charge distributions are far from equilibrium;among these,there is the most remarkable deviation from equilibrium for N2,for its many charges concentrate on two sides of the molecule,which is in agreement with the well-known characteristic of the nitrogen molecule.The relativistic effect is remarkable even for the same period.展开更多
Configuration-constrained potential-energy-surface calculations are performed to investigate high-K isomers in97Y,130Ba,176Yb,177Lu,and178Hf that were observed to have increased electric quadrupole moments but decreas...Configuration-constrained potential-energy-surface calculations are performed to investigate high-K isomers in97Y,130Ba,176Yb,177Lu,and178Hf that were observed to have increased electric quadrupole moments but decreased charge radii relative to the states on which they are built.Taking into account the efects of deformation change and unpaired protons,our calculations can reproduce the enhancement of electric quadrupole moments for the isomers in97Y,130Ba,176Yb,177Lu and the Kπ=8 isomer in178Hf,and can reproduce the reduction of charge radii for the Kπ=27/2 isomer in97Y and the Kπ=16+isomer in178Hf.展开更多
The nuclear electric quadrupole moment (NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that ...The nuclear electric quadrupole moment (NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that of known masses, and there is still no global NQM formula for all bound nuclei. In this paper, we propose an analytical formula, which includes the shell corrections and which is the function of the charge number, mass number, spin, charge radius, and nuclear deformation, for calculating the NQMs of all bound nuclei. Our calculated NQMs of 524 nuclei in their ground states are reasonable compared to the experimental data based on the nuclear deformation parameters derived from the Weizsacker-Skyrme (WS) nuclear mass models. Smaller rms deviations between the calculated NQMs and experimental data indicate that the deformation parameters predicted from the WS mass models are reasonable. In addition, 161 unmeasured NQMs with known spins are also predicted with the proposed formula.展开更多
We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the...We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive.展开更多
By making use of the scheme developed by Damour, Soffel and Xu, in terms of Maple\|computer algebra system, the first post\|Newtonian equations of motion for binary systems with monopole, spin and quadrupole interacti...By making use of the scheme developed by Damour, Soffel and Xu, in terms of Maple\|computer algebra system, the first post\|Newtonian equations of motion for binary systems with monopole, spin and quadrupole interaction are for the first time derived in an explicit and complete form. The equations of motion are expressed in the local coordinate system as well as in a global coordinate system. The new terms containing quadrupole\|quadrupole moments might be of some importance for a precise description of coalescing neutron star binaries.展开更多
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874064)the Strategic Priority and the Research Program of the Chinese Academy of Sciences(Grant No.XDB21030300)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFA0302104)Yong Liu acknowledges the Project of Hebei Educational Department,China(Grant No.ZD2018015)the Natural Science Foundation of Hebei Province,China(Grant No.A2019203507)Bing-Bing Suo acknowledges the financial support from the National Natural Science foundation of China(Grant Nos.21673174 and 21873077).
文摘Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate values of the electric quadrupole moments of^2P3/2,^2D3/2,5/2,and^2F5/2,7/2 states which agree well with experimental values.The important role of the electronic correlation to the electric quadrupole moments is investigated.Our calculations indicate the early dispute of the electric quadrupole moment of the Yb^+(2F7/2)state for which the measured and theoretical values have a large discrepancy.These electric quadrupole moment values can help us to determine the electric quadrupole shifts in start-of-the-art experiments of the Yb+ion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704398 and 11934014)the National Key Research and Development Program of China(Grant No.2017YFA0304402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030300)。
文摘Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock(MCDHF)method, we calculated the hyperfine interaction constants, the Landég-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+,61Ni12+,61Ni14+, and61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions(see Fig. 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics(QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.
基金The project supported by the National Natural Science Foundation of China and the Nuclear Industry Science Foundation of China
文摘The Harmonic OseiUator Quadruple Pairing Cranking Hartree-Fock-Bogoliubov(HFB)theoreti-cal model is established and applied to the superdeforrned(SD)rotational states.The reduction and col-lapse of the pairing fields,including Y<sub>20</sub>,Y<sub>21</sub> and Y<sub>22</sub> fields at superdeformation and high spins,are stud-ied.It is found that the correct rotational frequency ω-dependence of the pairing fields is crucial for thetheory to reproduce the rising behavior of dynamic moment of inertia J<sup>(2)</sup> observed in the A=190 region,and the Y<sub>21</sub> pairing contributes significantly to reducing the rising rate of J<sup>(2)</sup> and thus may strongly influ-enee the collective properties of SD nuclei.The calculated J<sup>(2)</sup> of <sup>192</sup>H8 is in good agreement with the ex-perimental data up to (?)ω=0.32 MeV.
文摘A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.
文摘The magnetic and quadrupole moments of the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states are calculated within the QCD light-cone sum rules.The compact diquark-antidiquark interpolating currents and the distribution amplitudes of the on-shell photon are used to extract the magnetic and quadrupole moments of these states.The magnetic moments are acquired asμZ_(c)=0.50+0.22−0.22μN,μZ_(c)^(1)=1.22+0.34−0.32μN,andμZ_(c)^(2)=2.40+0.53−0.48μN for the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states,respectively.The magnetic moments evaluated for the Z_(c)4020)+,Z_(c)(4050)+,and Z_(c)(4600)+states are sufficiently large to be experimentally measurable.The magnetic moment is an excellent platform for studying the internal structure of hadrons governed by the quark-gluon dynamics of QCD because it is the leading-order response of a bound system to a weak external magnetic field.The quadrupole moment results are DZ_(c)=(0.20+0.05−0.04)×10^(−3)fm^(2),DZ_(c)^(1)=(0.57+0.07−0.08)×10^(−3)fm^(2),and DZ_(c)^(2)=(0.30+0.05−0.04)×10^(−3)fm^(2)for the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states,respectively.We obtain a non-zero,but small,value for the quadrupole moments of the Z_(c)states,which indicates a non-spherical charge distribution.The nature and internal structure of these states can be elucidated by comparing future experimental data on the magnetic and quadrupole moments of the Z_(c)(4020)^(+),Z_(c)(4050)^(+),and Z_(c)(4600)^(+)states with the results of the present study.
文摘A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is Kerr-like. Its Taylor expansion form coincides with second order quadrupole metrics with slow rotation already found. Moreover, it can be transformed to an improved Hartle-Thorne metric, which guarantees its validity to be useful in studying compact object, and it is possible to find an inner solution.
基金Project supported by the Fundamental Research Funds for the Central Universities
文摘In the present work we calculate the energies,quadrupole moments,and electric field gradients(EFGs) of molecules C2,N2,and O2 based on the DIRRCI method with basis aug-cc-pVTZ-DK.We prove that the quadratic force constant k2 is the product of charge and EFG at its equilibrium nuclear distance.The dipole charge distributions for these symmetrical molecules are all in equilibrium,however,the quadrupole charge distributions are far from equilibrium;among these,there is the most remarkable deviation from equilibrium for N2,for its many charges concentrate on two sides of the molecule,which is in agreement with the well-known characteristic of the nitrogen molecule.The relativistic effect is remarkable even for the same period.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11205120 and 11235001)the National Key Basic Research Program of China (Grant No. 2013CB834400)
文摘Configuration-constrained potential-energy-surface calculations are performed to investigate high-K isomers in97Y,130Ba,176Yb,177Lu,and178Hf that were observed to have increased electric quadrupole moments but decreased charge radii relative to the states on which they are built.Taking into account the efects of deformation change and unpaired protons,our calculations can reproduce the enhancement of electric quadrupole moments for the isomers in97Y,130Ba,176Yb,177Lu and the Kπ=8 isomer in178Hf,and can reproduce the reduction of charge radii for the Kπ=27/2 isomer in97Y and the Kπ=16+isomer in178Hf.
基金Supported by the National Natural Science Foundation of China(11465005,11505035,and 11647309)
文摘The nuclear electric quadrupole moment (NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that of known masses, and there is still no global NQM formula for all bound nuclei. In this paper, we propose an analytical formula, which includes the shell corrections and which is the function of the charge number, mass number, spin, charge radius, and nuclear deformation, for calculating the NQMs of all bound nuclei. Our calculated NQMs of 524 nuclei in their ground states are reasonable compared to the experimental data based on the nuclear deformation parameters derived from the Weizsacker-Skyrme (WS) nuclear mass models. Smaller rms deviations between the calculated NQMs and experimental data indicate that the deformation parameters predicted from the WS mass models are reasonable. In addition, 161 unmeasured NQMs with known spins are also predicted with the proposed formula.
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 11165014 and 11175053).
文摘We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive.
文摘By making use of the scheme developed by Damour, Soffel and Xu, in terms of Maple\|computer algebra system, the first post\|Newtonian equations of motion for binary systems with monopole, spin and quadrupole interaction are for the first time derived in an explicit and complete form. The equations of motion are expressed in the local coordinate system as well as in a global coordinate system. The new terms containing quadrupole\|quadrupole moments might be of some importance for a precise description of coalescing neutron star binaries.