There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote...There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in pet...Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.展开更多
Effects of Sn and Sb on the structure and magnetic properties of high induction oriented silicon steel have been investigated.The heats with Sn or Sb possess rather fine primary and secondary gram sizes.Sn or Sb promo...Effects of Sn and Sb on the structure and magnetic properties of high induction oriented silicon steel have been investigated.The heats with Sn or Sb possess rather fine primary and secondary gram sizes.Sn or Sb promotes the finer AlN particles,increases the amount of pre- cipitated AlN after normalizing and strengthens the ability of inhibition.After decarburizing annealing,the texture components of{110}〈115〉and〈110〉〈001〉tend to increase and form more secondary grain nuclei.展开更多
SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. P...SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.展开更多
Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequen...Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.展开更多
A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encr...A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encrypted message. All data delivered in the cryptosystem are public. Therefore it does not need a partial decrypting results combiner and any secure communication channel. The security of the group oriented cryptosystem is based on the intractability of the discrete log problem and difficulty of factoring large integers. The suspected attacks can not break it.展开更多
"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course ..."Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.展开更多
Among all the structural formations,fiber-like structure is one of the most common modalities in organisms that undertake essential functions.Alterations in spatial organization of fibrous structures can refiect infor...Among all the structural formations,fiber-like structure is one of the most common modalities in organisms that undertake essential functions.Alterations in spatial organization of fibrous structures can refiect information of physiological and pathological activities,which is of significance in both researches and clinical applications.Hence,the quantification of subtle changes in fiber-like structures is potentiallymeaningful in studying structure-function relationships,disease progression,carcinoma staging and engineered tissue remodeling.In this study,we examined a wide range of methodologies that quantify organizational and morphological features of fibrous structures,including orientation,alignment,waviness and thickness.Each method was demonstrated with specific applications.Finally,perspectives of future quantification analysis techniques were explored.展开更多
Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept ...Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept is proposed to reduce the number of design variables.However,the traditional stress-based method can not deal with patch orientation optimization of composite structures.In this paper,we propose an extended stress-based method to deal with such problems.The considered problems are to minimize the mean compliance under multiple load cases or to maximize the eigenvalues of a composite structure.Four numerical examples are solved to demonstrate the efficiency of the new method.It is shown that the new method has the ability to deal with constraints on orientation angle,such as symmetric,antisymmetric and discrete orientation angle constraints.The iteration is less time-consuming because no sensitivity analysis is needed and a quick convergence rate can be achieved.展开更多
We studied relationships between stand structure and stand stability according to thinning intensity in an afforested oriental beech stand. Various thinning intensities were applied in sample stands. We sampled eight ...We studied relationships between stand structure and stand stability according to thinning intensity in an afforested oriental beech stand. Various thinning intensities were applied in sample stands. We sampled eight plots in stands that were lightly thinned, eight plots in heavily thinned stands and eight plots in unthinned stands as a control. Height and diameter distributions of the stands were measured to assess stand structure. We quantified individual tree stability and collective stability. Heavy thinning during the first thinning operation damaged the storied structure of the stand in thicket stage and affected collective structuring ability. While most control plots had multi-storied stands, after light and heavy thinning two-storied structure became more common.Large gaps occurred in the canopy after heavy thinning. On average, nine tree collectives were formed per sampling plot in the untreated stand, seven collectives after thinning in 2008 and four collectives after thinning in 2009. Stable trees accounted for 17 % of trees in control plots, 24 % in lightly thinned plots, and 15 % in heavily thinned plots. Collective stability values were 83 % in control plots, 82 % in lightly thinned plots and 36 % in heavily thinned plots. We conclude that it is necessary to retain collective structuring capacity during thinning operations for sustaining stand stability.展开更多
The organized alignment of cells in various tissues plays a significant role in the maintenance of specific functions.To induce such an alignment,ideal scaffolds should simulate the characteristics and morphologies of...The organized alignment of cells in various tissues plays a significant role in the maintenance of specific functions.To induce such an alignment,ideal scaffolds should simulate the characteristics and morphologies of natural tissues.Aligned structures that guide cell orientation are used to facilitate tissue regeneration and repair.We here review how various aligned structures are fabricated,including aligned electrospun nanofibers,aligned porous or channeled structures,micropatterns and combinations thereof,and their application in nerve,skeletal muscle,tendon,and tubular dentin regeneration.The future use of aligned structures in tissue engineering is also discussed.展开更多
Three possible structures of the favorable growth unit Al6(OH)<sup>18 (H2O)6 of gibbsite are calculated by ab initio at STO-3G, STO-3G*, STO-6G, STO-6G*, 3-21G, 6-31G levels and DFT at RB3LYP/3-21G, B3LYP/6-...Three possible structures of the favorable growth unit Al6(OH)<sup>18 (H2O)6 of gibbsite are calculated by ab initio at STO-3G, STO-3G*, STO-6G, STO-6G*, 3-21G, 6-31G levels and DFT at RB3LYP/3-21G, B3LYP/6-31G levels. The most excellent structure of Al6(OH)<sup>18 (H2O)6 (structure [A]) is confirmed. Based on these calculation results and considering efficiency factor, ab initio at STO-3G level is selected to optimize the structure [A]. The calculation results are compared with the experimental structure parameters of correlative systems. The total energy, orbital population and atomic charge of structure [A] are calculated using Dipole & Sphere solvent model at 6-31G, B3LYP/6-31G, 6-31G*, B3LYP/6-31G*, 6-31G** and B3LYP/6-31G** levels. The bonding orientation of Al6(OH)18(H2O)6 is analyzed.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
With the increasing demand for flexible piezoelectric sensor components,research on polyvinylidene fluoride(PVDF)based piezoelectric polymers is mounting up.However,the low dipole polarization and disordered polarizat...With the increasing demand for flexible piezoelectric sensor components,research on polyvinylidene fluoride(PVDF)based piezoelectric polymers is mounting up.However,the low dipole polarization and disordered polarization direction presented in PVDF hinder further improvement of piezoelectric properties.Here,we constructed an oriented tertiary structure,consisting of molecular chains,crystalline region,and MXene sheets,in MXene/PVDF nanocomposite via a temperature-pressure dual-field regulation method.The highly oriented PVDF molecular chains form approximately 90%of theβphase.In addition,the crystalline region structure with long-range orientation achieves out of plane polarization orientation.The parallel orientation arrangement of MXene effectively enhances the piezoelectric performances of the nanocomposite,and the current output of the device increases by nearly 23 times.This high output device is used to monitor exercise action,exploring the potential applications in wearable electronics.展开更多
The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effective...The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.展开更多
A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demons...A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.展开更多
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th...The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.展开更多
文摘There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.
文摘Effects of Sn and Sb on the structure and magnetic properties of high induction oriented silicon steel have been investigated.The heats with Sn or Sb possess rather fine primary and secondary gram sizes.Sn or Sb promotes the finer AlN particles,increases the amount of pre- cipitated AlN after normalizing and strengthens the ability of inhibition.After decarburizing annealing,the texture components of{110}〈115〉and〈110〉〈001〉tend to increase and form more secondary grain nuclei.
文摘SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.
文摘Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.
文摘A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encrypted message. All data delivered in the cryptosystem are public. Therefore it does not need a partial decrypting results combiner and any secure communication channel. The security of the group oriented cryptosystem is based on the intractability of the discrete log problem and difficulty of factoring large integers. The suspected attacks can not break it.
基金supported by NSF B55101680,NTIF B2090571,B2110140,SCUT x2rjD2116860,Y1080170,Y1090160,Y1100030,Y1100050,Y1110020 and S1010561121,G101056137
文摘"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.
基金supported by National Key Research and Development Program of China (2019YFE0113700 and 2017YFA0700501)National Natural Science Foundation of China (61905214,62035011,11974310 and 31927801)Natural Science Foundation of Zhejiang Province (LR20F050001).
文摘Among all the structural formations,fiber-like structure is one of the most common modalities in organisms that undertake essential functions.Alterations in spatial organization of fibrous structures can refiect information of physiological and pathological activities,which is of significance in both researches and clinical applications.Hence,the quantification of subtle changes in fiber-like structures is potentiallymeaningful in studying structure-function relationships,disease progression,carcinoma staging and engineered tissue remodeling.In this study,we examined a wide range of methodologies that quantify organizational and morphological features of fibrous structures,including orientation,alignment,waviness and thickness.Each method was demonstrated with specific applications.Finally,perspectives of future quantification analysis techniques were explored.
基金supported by the National Science Fund for Distinguished Young Scholars(10925212)the National Natural Science Foundation of China(11002113)the National Basic Research Program of China(2011CB610304)
文摘Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept is proposed to reduce the number of design variables.However,the traditional stress-based method can not deal with patch orientation optimization of composite structures.In this paper,we propose an extended stress-based method to deal with such problems.The considered problems are to minimize the mean compliance under multiple load cases or to maximize the eigenvalues of a composite structure.Four numerical examples are solved to demonstrate the efficiency of the new method.It is shown that the new method has the ability to deal with constraints on orientation angle,such as symmetric,antisymmetric and discrete orientation angle constraints.The iteration is less time-consuming because no sensitivity analysis is needed and a quick convergence rate can be achieved.
基金supported by Karadeniz Technical University Research Fund,Project number 2010.113.001.11
文摘We studied relationships between stand structure and stand stability according to thinning intensity in an afforested oriental beech stand. Various thinning intensities were applied in sample stands. We sampled eight plots in stands that were lightly thinned, eight plots in heavily thinned stands and eight plots in unthinned stands as a control. Height and diameter distributions of the stands were measured to assess stand structure. We quantified individual tree stability and collective stability. Heavy thinning during the first thinning operation damaged the storied structure of the stand in thicket stage and affected collective structuring ability. While most control plots had multi-storied stands, after light and heavy thinning two-storied structure became more common.Large gaps occurred in the canopy after heavy thinning. On average, nine tree collectives were formed per sampling plot in the untreated stand, seven collectives after thinning in 2008 and four collectives after thinning in 2009. Stable trees accounted for 17 % of trees in control plots, 24 % in lightly thinned plots, and 15 % in heavily thinned plots. Collective stability values were 83 % in control plots, 82 % in lightly thinned plots and 36 % in heavily thinned plots. We conclude that it is necessary to retain collective structuring capacity during thinning operations for sustaining stand stability.
基金This work was financially supported by the National Key Research and Development Program of China(2018YFA0703000)the NationalNatural Science Foundation of China(81670972,31872752)+1 种基金Key Research and Development Program of Zhejiang,China(2017C01054,2018C03062,2017C01063)Postdoctoral Science Foundation of China(2020TQ0257,2020M681896).
文摘The organized alignment of cells in various tissues plays a significant role in the maintenance of specific functions.To induce such an alignment,ideal scaffolds should simulate the characteristics and morphologies of natural tissues.Aligned structures that guide cell orientation are used to facilitate tissue regeneration and repair.We here review how various aligned structures are fabricated,including aligned electrospun nanofibers,aligned porous or channeled structures,micropatterns and combinations thereof,and their application in nerve,skeletal muscle,tendon,and tubular dentin regeneration.The future use of aligned structures in tissue engineering is also discussed.
文摘Three possible structures of the favorable growth unit Al6(OH)<sup>18 (H2O)6 of gibbsite are calculated by ab initio at STO-3G, STO-3G*, STO-6G, STO-6G*, 3-21G, 6-31G levels and DFT at RB3LYP/3-21G, B3LYP/6-31G levels. The most excellent structure of Al6(OH)<sup>18 (H2O)6 (structure [A]) is confirmed. Based on these calculation results and considering efficiency factor, ab initio at STO-3G level is selected to optimize the structure [A]. The calculation results are compared with the experimental structure parameters of correlative systems. The total energy, orbital population and atomic charge of structure [A] are calculated using Dipole & Sphere solvent model at 6-31G, B3LYP/6-31G, 6-31G*, B3LYP/6-31G*, 6-31G** and B3LYP/6-31G** levels. The bonding orientation of Al6(OH)18(H2O)6 is analyzed.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
基金the National Natural Science Foundation of China(No.52303328)the Postdoctoral Innovation Talents Support Program(No.BX20220257)+2 种基金the Multiple Clean Energy Harvesting System(No.YYF20223026)the Sichuan Science and Technology Program(No.2023NSFSC0313)a Catalyst Seeding General Grant administered by the Royal Society of New Zealand(Contract 20-UOA-035-CSG)。
文摘With the increasing demand for flexible piezoelectric sensor components,research on polyvinylidene fluoride(PVDF)based piezoelectric polymers is mounting up.However,the low dipole polarization and disordered polarization direction presented in PVDF hinder further improvement of piezoelectric properties.Here,we constructed an oriented tertiary structure,consisting of molecular chains,crystalline region,and MXene sheets,in MXene/PVDF nanocomposite via a temperature-pressure dual-field regulation method.The highly oriented PVDF molecular chains form approximately 90%of theβphase.In addition,the crystalline region structure with long-range orientation achieves out of plane polarization orientation.The parallel orientation arrangement of MXene effectively enhances the piezoelectric performances of the nanocomposite,and the current output of the device increases by nearly 23 times.This high output device is used to monitor exercise action,exploring the potential applications in wearable electronics.
基金the National Key R&D Program of China(2019YFD1101200,2019YFD1101204)Natural Science Foundation of China(51772150)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Provincial Key Research and Development Program(BE2018008-1).
文摘The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.
基金Project(50721003)supported by the Creative Research Group of National Natural Science Foundation of ChinaProject(50825102)supported by the National Science Fund for Distinguished Young Scholars,China
文摘A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.51874110 and 51604089)Natural Science Foundation of Heilongjiang Province(YQ2021B004)Open Project of State Key Laboratory of Urban Water Resource and Environment(Grant No.QA202138).
文摘The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.