Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new inter...Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new interpretation of quantum physics. We show that this QTOC can address the mind and body problem, the hard problem of consciousness. It also provides a physics foundation and mathematical formulation to study consciousness and neural network. We demonstrate how to apply it to develop and extend various models of consciousness. We show the predictions from this theory about the existence of a universal quantum vibrational field and the large-scale, nearly instantaneous synchrony of brainwaves among different parts of brain, body, people, and objects. The correlation between Schumann Resonances and some brainwaves is explained. Recent progress in quantum information theory, especially regarding quantum entanglement and quantum error correction code, is applied to study memory and shed new light in neuroscience.展开更多
文摘Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new interpretation of quantum physics. We show that this QTOC can address the mind and body problem, the hard problem of consciousness. It also provides a physics foundation and mathematical formulation to study consciousness and neural network. We demonstrate how to apply it to develop and extend various models of consciousness. We show the predictions from this theory about the existence of a universal quantum vibrational field and the large-scale, nearly instantaneous synchrony of brainwaves among different parts of brain, body, people, and objects. The correlation between Schumann Resonances and some brainwaves is explained. Recent progress in quantum information theory, especially regarding quantum entanglement and quantum error correction code, is applied to study memory and shed new light in neuroscience.