This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eig...This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.展开更多
An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the success...An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.展开更多
Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in c...Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in cavity QED by using another peculiar tripartite entangled state. In the scheme the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field, the successful probability of dense coding scheme with this peculiar tripartite entangled state equals 1.展开更多
We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in th...We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.展开更多
We propose two schemes for quantum dense coding without Bell states measurement. One is deterministic, the other is probabilistic. In the deterministic scheme, the initial entangled state will be not destructed. In th...We propose two schemes for quantum dense coding without Bell states measurement. One is deterministic, the other is probabilistic. In the deterministic scheme, the initial entangled state will be not destructed. In the proba-bilistic scheme, the initial unknown nonmaximal entangled state will be transformed into a maximal entangled one. Our schemes require two auxiliary particles and perform single-qubit measurements on them. Thus our schemes are simple and economic.展开更多
The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show t...The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show that, despite the intrinsic decoherence, the correlations as well as the dense coding channel capacity can be effectively increased via the combination of system parameters, i.e., the mutual coupling energy between the two charge qubits is larger than the Josephson energy of the qubit. The bigger the difference between them is, the better the effect is.展开更多
Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret ...Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret sharing with entanglement in cavity QED. Based on the theory of secret sharing the QDC process can be more secure.展开更多
An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atom...An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity. Thus the scheme is insensitive to cavity decay and the thermal field. In the scheme, Alice can send faithfully 4 bits of classical information to Bob by sending two qubits. Generalized Bell states can be exactly distinguished by detecting the atomic state, and quantum dense coding can be realized in a simple way.展开更多
A protocol of quantum dense coding with gravitational cat states is proposed.We explore the effects of temperature and system parameters on dense coding capacity and provide an efficient strategy to preserve the quant...A protocol of quantum dense coding with gravitational cat states is proposed.We explore the effects of temperature and system parameters on dense coding capacity and provide an efficient strategy to preserve the quantum advantage of dense coding for these states.Our results may open new opportunities for secure communication and insights into the fundamental nature of gravity in the context of quantum information processing.展开更多
In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. O...In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N + 1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.展开更多
We study the properties of the three-mode Einstein-Podolsky-Rose (EPR) eigenstate and its application in quantum dense coding. Our result shows that the three-mode EPR eigenstate provides a convenient way to realize q...We study the properties of the three-mode Einstein-Podolsky-Rose (EPR) eigenstate and its application in quantum dense coding. Our result shows that the three-mode EPR eigenstate provides a convenient way to realize quantum dense coding when the quantum channel is a three-mode squeezed state.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense codi...This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.展开更多
We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangle...We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state by analogy with the theory of sharing information among involved users.展开更多
Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties,which would permit a wide variety of quantum communication applications.Here,we demonstrate a fully...Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties,which would permit a wide variety of quantum communication applications.Here,we demonstrate a fully-connected quantum communication network,exploiting three pairs of Einstein–Podolsky–Rosen(EPR)entangled sideband modes,with high degree entanglement of 8.0 dB,7.6 dB,and 7.2 dB.Each sideband modes from a squeezed field are spatially separated by demultiplexing operation,then recombining into new group according to network requirement.Each group of sideband modes are distributed to one of the parties via a single physical path,making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.展开更多
We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses.First,we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with tw...We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses.First,we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts,or with three pulses.Second,we propose to create an electrons−nuclei-entangled state,which is named a super bell state(SBS)for it mimics a large Bell state incorporating three small Bell states.Third,we show a protocol to create a three-atom electrons-nuclei entangled state which contains the three-body W and Greenberger−Horne−Zeilinger(GHZ)states simultaneously.These protocols possess high intrinsic fidelities,do not require single-site Rydberg addressing,and can be executed with large Rydberg Rabi frequencies in a weak,Gauss-scale magnetic field.The latter two protocols can enable measurement-based preparation of Bell,hyperentangled,and GHZ states,and,specifically,SBS can enable quantum dense coding where one can share three classical bits of information by sending one particle.展开更多
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)Hunan Provincial Natural Science Foundation,China (Grant No 06JJ4003)
文摘This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.
基金supported by the National Natural Science Foundation of China (Grant No 10674001)the Program of Education Department of Anhui University of China (Grant No KJ2007A002)the Youth Program of Fuyang Normal College of China (Grant No 2005LQ04)
文摘An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.
基金Project supported by Youth Foundation of Hubei Province, China (Grant No 2004Q001), the Key Program of Hubei Province, China (Grant No Z20052201) and Natural Science Foundation of Hubei Province, China (Grant No 2006ABA055).
文摘Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in cavity QED by using another peculiar tripartite entangled state. In the scheme the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field, the successful probability of dense coding scheme with this peculiar tripartite entangled state equals 1.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074002 and 61275119)the Doctoral Foundation of the Ministry of Education of China(Grant No.20103401110003)the Natural Science Research Project of Education Department of Anhui Province,China(Grant Nos.KJ2013A205,KJ2011ZD07,and KJ2012Z309)
文摘We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.
基金Supported by the Key Program of the Education Department of Anhui Province under Grant No.KJ2009A048Zthe Program of the Education Department of Anhui Province under Grant No.2006KJ057B+1 种基金Anhui Provincial Natural Science Foundation under Grant No.03042401the Talent Foundation of Anhui University
文摘We propose two schemes for quantum dense coding without Bell states measurement. One is deterministic, the other is probabilistic. In the deterministic scheme, the initial entangled state will be not destructed. In the proba-bilistic scheme, the initial unknown nonmaximal entangled state will be transformed into a maximal entangled one. Our schemes require two auxiliary particles and perform single-qubit measurements on them. Thus our schemes are simple and economic.
基金Project supported by the Project to Develop Outstanding Young Scientific Talents of China(Grant No.2013711019)the Natural Science Foundation of Xinjiang Province,China(Grant No.2012211A052)+1 种基金the Foundation for Key Program of Ministry of Education of China(Grant No.212193)the Innovative Foundation for Graduate Students Granted by the Key Subjects of Theoretical Physics of Xinjiang Province,China(Grant No.LLWLL201301)
文摘The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show that, despite the intrinsic decoherence, the correlations as well as the dense coding channel capacity can be effectively increased via the combination of system parameters, i.e., the mutual coupling energy between the two charge qubits is larger than the Josephson energy of the qubit. The bigger the difference between them is, the better the effect is.
基金National Natural Science Foundation of China under Grant Nos.60678022 and 10674001the Key Program of the Education Department of Anhui Province under Grant Nos.2006KJ070A and 2006KJ057B+1 种基金the Talent Foundation of Anhui UniversityAnhui Key Laboratory of Information Materials and Devices of Anhui University
文摘Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret sharing with entanglement in cavity QED. Based on the theory of secret sharing the QDC process can be more secure.
基金Project supported by the Postdoctal Foundation of Central South University of China, the Important Program of Hunan Provincial Education Department (Grant No. 06A038)Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013)
文摘An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity. Thus the scheme is insensitive to cavity decay and the thermal field. In the scheme, Alice can send faithfully 4 bits of classical information to Bob by sending two qubits. Generalized Bell states can be exactly distinguished by detecting the atomic state, and quantum dense coding can be realized in a simple way.
基金supported by the Postdoc grant of the Semnan University under Contract No.21270。
文摘A protocol of quantum dense coding with gravitational cat states is proposed.We explore the effects of temperature and system parameters on dense coding capacity and provide an efficient strategy to preserve the quantum advantage of dense coding for these states.Our results may open new opportunities for secure communication and insights into the fundamental nature of gravity in the context of quantum information processing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10971247 and 10905016)Natural Science Foundation of Hebei Province of China (Grant Nos. F2009000311 and A2010000344)the Science Foundation of Hebei Normal University (Grant No. L2010Q04)
文摘In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N + 1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.
文摘We study the properties of the three-mode Einstein-Podolsky-Rose (EPR) eigenstate and its application in quantum dense coding. Our result shows that the three-mode EPR eigenstate provides a convenient way to realize quantum dense coding when the quantum channel is a three-mode squeezed state.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
文摘This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.
基金Project supported by Anhui Provincial Natural Science Foundation, China (Grant No 03042401), the Key Program of the Education Department of Anhui Province, China (Grant Nos 2002kj029zd and 2006kj070A), and the Talent Foundation of Anhui University, China. 0ne of the authors, Xue Zheng-Yuan, is also supported by the Postgraduate Innovation Research Plan from Anhui university, China.
文摘We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state by analogy with the theory of sharing information among involved users.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.62225504,62027821,62035015,U22A6003,and 12174234)the National Key R&D Program of China(Grant No.2020YFC2200402)the Program for Sanjin Scholar of Shanxi Province.
文摘Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties,which would permit a wide variety of quantum communication applications.Here,we demonstrate a fully-connected quantum communication network,exploiting three pairs of Einstein–Podolsky–Rosen(EPR)entangled sideband modes,with high degree entanglement of 8.0 dB,7.6 dB,and 7.2 dB.Each sideband modes from a squeezed field are spatially separated by demultiplexing operation,then recombining into new group according to network requirement.Each group of sideband modes are distributed to one of the parties via a single physical path,making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.12074300 and 11805146the Innovation Program for Quantum Science and Technology 2021ZD0302100the Fundamental Research Funds for the Central Universities.
文摘We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses.First,we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts,or with three pulses.Second,we propose to create an electrons−nuclei-entangled state,which is named a super bell state(SBS)for it mimics a large Bell state incorporating three small Bell states.Third,we show a protocol to create a three-atom electrons-nuclei entangled state which contains the three-body W and Greenberger−Horne−Zeilinger(GHZ)states simultaneously.These protocols possess high intrinsic fidelities,do not require single-site Rydberg addressing,and can be executed with large Rydberg Rabi frequencies in a weak,Gauss-scale magnetic field.The latter two protocols can enable measurement-based preparation of Bell,hyperentangled,and GHZ states,and,specifically,SBS can enable quantum dense coding where one can share three classical bits of information by sending one particle.