A realistic measurement setup for a system such system measured by a mesoscopie detector,is theoretically as a charged two-state (qubit) or multi-state quantum studied. To properly describe the measurement-induced b...A realistic measurement setup for a system such system measured by a mesoscopie detector,is theoretically as a charged two-state (qubit) or multi-state quantum studied. To properly describe the measurement-induced back-action,a detailed-balance preserved quantum master equation treatment is developed. The established framework is applicable for arbitrary voltages and temperatures.展开更多
Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels w...Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.展开更多
To implement generalized quantum measurement (GQM) one has to extend the original Hilbert space. Generally speaking, the additional dimensions of the ancilla space increase as the number of the operators of the GQM ...To implement generalized quantum measurement (GQM) one has to extend the original Hilbert space. Generally speaking, the additional dimensions of the ancilla space increase as the number of the operators of the GQM n increases. This paper presents a scheme for deterministically implementing all possible n-operator CQMs on a single atomic qubit by using only one 2-dimensional ancillary atomic qubit repeatedly, which remarkably reduces the complexity of the realistic physical system. Here the qubit is encoded in the internal states of an atom trapped in an optical cavity and single-photon pulses are employed to provide the interaction between qubits. It shows that the scheme can be performed remotely, and thus it is suitable for implementing CQM in a quantum network. What is more, the number of the total ancilla dimensions in our scheme achieves the theoretic low bound.展开更多
Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup de...Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup design allows accounting for the full multiple tunneling process between the dots through the Majorana island, within a master equation approach. In the co-tunneling regime, which results in a Majorana-mediated effective coupling between the dots, the master equation approach allows us to obtain analytic solutions for the measurement currents. The measurement quality,characterized by figures of merit such as the visibility of measurement signals, is carried out in regard to the unusual decoherence effect rather than ‘which-path’ dephasing. The results obtained in this work are expected to be useful for future experiments of Majorana qubit and stabilizer measurements.展开更多
Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and cer...Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experiments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. The proof of our main result is based on certain formulas describing probability distributions of time series related to quantum measurements.展开更多
We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format.The measurement results are compared in detail wi...We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format.The measurement results are compared in detail with simulation,showing a good consistence.Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond.This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.展开更多
Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum the...Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum theory if we extend the Feynman path integral by considering the relativistic effect of Feynman paths.According to this extended theory,we deduce not only the Klein-Gordon equation,but also the wave-function-collapse equation.It is shown that the stochastic and instantaneous collapse of the quantum measurement is due to the "potential noise" of the apparatus or environment and "inner correlation" of wave function respectively.Therefore,the definite-status of the macroscopic matter is due to itself and this does not disobey the quantum mechanics.This work will give a new recognition for the measurement problem.展开更多
The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT...The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT)type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time.The increase of decoherence rate can weaken the capacity for potential speedup(CPS)and delay the evolving process due to the frequently measurement localizing the electron in the DQD system.The system needs longer time to evolve to the target state as the enhancement of dephasing rate,because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron.Increasing the dephasing rate can sharp the QSL bound,but the decoherence rate would weaken the former effect and vice versa.Moreover,the CPS would be raised by increasing the energy displacement,while the enhancement of the coupling strength between two quantum dots can diminish it.It is interesting that there has an inflection point,when the coupling strength is less than the value of the point,the increasing effect of the CPS from the energy displacement is dominant,otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point.Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.展开更多
Symmetry,including the parity-time(PT)-symmetry,is a striking topic,widely discussed and employed in many fields.It is well-known that quantum measurement can destroy or disturb quantum systems.However,can and how doe...Symmetry,including the parity-time(PT)-symmetry,is a striking topic,widely discussed and employed in many fields.It is well-known that quantum measurement can destroy or disturb quantum systems.However,can and how does quantum measurement destroy the symmetry of the measured system?To answer the pertinent question,we establish the correlation between the quan-tum measurement and Floquet PT-symmetry and investigate for the first time how the measurement frequency and measurement strength affect the PT-symmetry of the measured system using the 40Ca+ion.It is already shown that the measurement at high frequencies would break the PT symmetry.Notably,even for an inadequately fast measurement frequency,if the measurement strength is sufficiently strong,the PT symmetry breaking can occur.The current work can enhance our knowledge of quantum measurement and symmetry and may inspire further research on the effect of quantum measurement on symmetry.展开更多
We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)emb...We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)embedded in an(N^2- 1)-dimensional Euclidean space R^((N^2)-1), and we find that an orthogonal measurement is an(N- 1)-dimensional projector operator on R^((N^2)-1). The states unchanged by an orthogonal measurement form an(N- 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of(N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.展开更多
In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in ...In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.展开更多
It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's...It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.展开更多
Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ...Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.展开更多
We propose the concept of the quantum generalized projector measurement (QGPM) for finite-dimensional quantum systems by studying the quantum generalized measurement. This research reveals a distinguished property o...We propose the concept of the quantum generalized projector measurement (QGPM) for finite-dimensional quantum systems by studying the quantum generalized measurement. This research reveals a distinguished property of this quantum generalized measurement: no matter what the system state is prior to the measurement and what the result of the measurement occurs, the state of the system after the measurement can be collapsed into any specified pure state, i.e., the state of quantum system can be deterministically reduced to any specified pure state just by a single QGPM. Subsequently. QGPM can be used to deterministically generate the maximum entangled pure state for quantum systems. We give three concrete theoretic schemes of generating the maximum quantum entangled pure states for two 2-Jevel particles, three 2-level particles and two 3-Jevel particles, respectively.展开更多
We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconduct- ing quantum interference device (SQUID). The obtained analytical results indicate that the measurement p...We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconduct- ing quantum interference device (SQUID). The obtained analytical results indicate that the measurement probability is frequency-dependent in a short time scale and has a close relationship with the measurement-induced dephasing. Furthermore, when the detuning between the driven and bare resonator equals the coupling strength, we can obtain the maximum measurement rate that is determined by the character of the noise in the SQUID. Finally, we analysed the mixed effect caused by coupling between the non-diagonal term and the external variable. It is found that the initial information of the qubit is destroyed due to quantum tunneling between the qubit states.展开更多
We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and ampl...We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.展开更多
The physical properties of a solid are determined by the electrons near the Fermi energy and their low-lying excitations. Thus, it is crucially important to obtain the band structure near the Fermi energy of a materia...The physical properties of a solid are determined by the electrons near the Fermi energy and their low-lying excitations. Thus, it is crucially important to obtain the band structure near the Fermi energy of a material to understand many novel phenomena that occur, such as high-To superconductivity, density waves, and Dirac-type excitations. One important way to determine the Fermi surface topology of a material is from its quantum oscillations in an external magnetic field. In this article, we provide a brief introduction to the substation at the Synergetic Extreme Condition User Facility (SECUF), with a focus on quantum oscillation measurements, including our motivation, the structure of and the challenges in building the substation, and perspectives.展开更多
The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed ...The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.展开更多
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolv...We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.展开更多
In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A m...In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.展开更多
文摘A realistic measurement setup for a system such system measured by a mesoscopie detector,is theoretically as a charged two-state (qubit) or multi-state quantum studied. To properly describe the measurement-induced back-action,a detailed-balance preserved quantum master equation treatment is developed. The established framework is applicable for arbitrary voltages and temperatures.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2017MF040).
文摘Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.
基金supported by the National Natural Science Foundation of China (Grant No 10774192)the Fund of Innovation of the Graduate School of National University of Defense Technology (Grant No B080201)
文摘To implement generalized quantum measurement (GQM) one has to extend the original Hilbert space. Generally speaking, the additional dimensions of the ancilla space increase as the number of the operators of the GQM n increases. This paper presents a scheme for deterministically implementing all possible n-operator CQMs on a single atomic qubit by using only one 2-dimensional ancillary atomic qubit repeatedly, which remarkably reduces the complexity of the realistic physical system. Here the qubit is encoded in the internal states of an atom trapped in an optical cavity and single-photon pulses are employed to provide the interaction between qubits. It shows that the scheme can be performed remotely, and thus it is suitable for implementing CQM in a quantum network. What is more, the number of the total ancilla dimensions in our scheme achieves the theoretic low bound.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304)the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174)。
文摘Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup design allows accounting for the full multiple tunneling process between the dots through the Majorana island, within a master equation approach. In the co-tunneling regime, which results in a Majorana-mediated effective coupling between the dots, the master equation approach allows us to obtain analytic solutions for the measurement currents. The measurement quality,characterized by figures of merit such as the visibility of measurement signals, is carried out in regard to the unusual decoherence effect rather than ‘which-path’ dephasing. The results obtained in this work are expected to be useful for future experiments of Majorana qubit and stabilizer measurements.
文摘Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experiments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. The proof of our main result is based on certain formulas describing probability distributions of time series related to quantum measurements.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB2012600)。
文摘We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format.The measurement results are compared in detail with simulation,showing a good consistence.Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond.This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.
基金Supported by the National Basic Research Program of China (973 Program) under Grant No. G2009CB929300the National Natural Science Foundation of China under Grant Nos. 10905016,10874013,60776061 and 60821061
文摘Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum theory if we extend the Feynman path integral by considering the relativistic effect of Feynman paths.According to this extended theory,we deduce not only the Klein-Gordon equation,but also the wave-function-collapse equation.It is shown that the stochastic and instantaneous collapse of the quantum measurement is due to the "potential noise" of the apparatus or environment and "inner correlation" of wave function respectively.Therefore,the definite-status of the macroscopic matter is due to itself and this does not disobey the quantum mechanics.This work will give a new recognition for the measurement problem.
基金the National Natural Science Foundation of China(Grant No.11974217)。
文摘The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT)type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time.The increase of decoherence rate can weaken the capacity for potential speedup(CPS)and delay the evolving process due to the frequently measurement localizing the electron in the DQD system.The system needs longer time to evolve to the target state as the enhancement of dephasing rate,because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron.Increasing the dephasing rate can sharp the QSL bound,but the decoherence rate would weaken the former effect and vice versa.Moreover,the CPS would be raised by increasing the energy displacement,while the enhancement of the coupling strength between two quantum dots can diminish it.It is interesting that there has an inflection point,when the coupling strength is less than the value of the point,the increasing effect of the CPS from the energy displacement is dominant,otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point.Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.
基金This work was supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.12074433,12004430,12174447,12174448,and 11904402).
文摘Symmetry,including the parity-time(PT)-symmetry,is a striking topic,widely discussed and employed in many fields.It is well-known that quantum measurement can destroy or disturb quantum systems.However,can and how does quantum measurement destroy the symmetry of the measured system?To answer the pertinent question,we establish the correlation between the quan-tum measurement and Floquet PT-symmetry and investigate for the first time how the measurement frequency and measurement strength affect the PT-symmetry of the measured system using the 40Ca+ion.It is already shown that the measurement at high frequencies would break the PT symmetry.Notably,even for an inadequately fast measurement frequency,if the measurement strength is sufficiently strong,the PT symmetry breaking can occur.The current work can enhance our knowledge of quantum measurement and symmetry and may inspire further research on the effect of quantum measurement on symmetry.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405136 and 11547311)the Fundamental Research Funds for the Central Universities of China(Grant No.2682014BR056)
文摘We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level(N≥2) quantum system constitute a convex set M^(N)embedded in an(N^2- 1)-dimensional Euclidean space R^((N^2)-1), and we find that an orthogonal measurement is an(N- 1)-dimensional projector operator on R^((N^2)-1). The states unchanged by an orthogonal measurement form an(N- 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of(N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.
文摘In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.
基金supported by the National Natural Science Foundation of China (Grant Nos.12271394 and 12071336)the Key Research and Development Program of Shanxi Province (Grant No.202102010101004)。
文摘It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.
基金supported by the Fundamental Research Funds for the Central Universities(WK2470000035)USTC Research Funds of the Double First-Class Initiative(YD2030002007,YD2030002011)+1 种基金the National Natural Science Foundation of China(62222512,12104439,12134014,and 11974335)the Anhui Provincial Natural Science Foundation(2208085J03).
文摘Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.
基金The project supported by the National Science Fund for Distinguished Young Scholars under Grant No. 60225015
文摘We propose the concept of the quantum generalized projector measurement (QGPM) for finite-dimensional quantum systems by studying the quantum generalized measurement. This research reveals a distinguished property of this quantum generalized measurement: no matter what the system state is prior to the measurement and what the result of the measurement occurs, the state of the system after the measurement can be collapsed into any specified pure state, i.e., the state of quantum system can be deterministically reduced to any specified pure state just by a single QGPM. Subsequently. QGPM can be used to deterministically generate the maximum entangled pure state for quantum systems. We give three concrete theoretic schemes of generating the maximum quantum entangled pure states for two 2-Jevel particles, three 2-level particles and two 3-Jevel particles, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No.10725415)the State Key Program for Basic Research of China (Grant No.2006CB921801)
文摘We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconduct- ing quantum interference device (SQUID). The obtained analytical results indicate that the measurement probability is frequency-dependent in a short time scale and has a close relationship with the measurement-induced dephasing. Furthermore, when the detuning between the driven and bare resonator equals the coupling strength, we can obtain the maximum measurement rate that is determined by the character of the noise in the SQUID. Finally, we analysed the mixed effect caused by coupling between the non-diagonal term and the external variable. It is found that the initial information of the qubit is destroyed due to quantum tunneling between the qubit states.
文摘We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.
文摘The physical properties of a solid are determined by the electrons near the Fermi energy and their low-lying excitations. Thus, it is crucially important to obtain the band structure near the Fermi energy of a material to understand many novel phenomena that occur, such as high-To superconductivity, density waves, and Dirac-type excitations. One important way to determine the Fermi surface topology of a material is from its quantum oscillations in an external magnetic field. In this article, we provide a brief introduction to the substation at the Synergetic Extreme Condition User Facility (SECUF), with a focus on quantum oscillation measurements, including our motivation, the structure of and the challenges in building the substation, and perspectives.
文摘The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.
文摘We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
文摘In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.