A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model wil...A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model will greatly improve its robustness.The existing method is to use automatic differentials or finite difference to obtain a gradient and use it to construct adversarial examples.This paper proposes an innovative method for constructing adversarial examples of quantum variational circuits.In this method,the gradient can be obtained by measuring the expected value of a quantum bit respectively in a series quantum circuit.This method can be used to construct the adversarial examples for a quantum variational circuit classifier.The implementation results prove the effectiveness of the proposed method.Compared with the existing method,our method requires fewer resources and is more efficient.展开更多
Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a fun...Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a function with variables necessitates at least d+1 function evaluations,resulting in a computational complexity of O(d).As the number of variables increases,the classical gradient estimation methods require substantial resources,ultimately surpassing the capabilities of classical computers.Fortunately,leveraging the principles of superposition and entanglement in quantum mechanics,quantum computers can achieve genuine parallel computing,leading to exponential acceleration over classical algorithms in some cases.In this paper,we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function.The complexity of this algorithm is just O(1).Building upon this approach,we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver(VQE),creating a pure quantum variational optimization algorithm.Compared with classical gradient-based optimization algorithm,this quantum optimization algorithm has remarkable complexity advantages,providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms,highlighting the potential of quantum computing in this field.展开更多
Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental p...Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.展开更多
Label propagation is an essential semi-supervised learning method based on graphs,which has a broad spectrum of applications in pattern recognition and data mining.This paper proposes a quantum semi-supervised classif...Label propagation is an essential semi-supervised learning method based on graphs,which has a broad spectrum of applications in pattern recognition and data mining.This paper proposes a quantum semi-supervised classifier based on label propagation.Considering the difficulty of graph construction,we develop a variational quantum label propagation(VQLP)method.In this method,a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.Furthermore,we design a quantum semi-supervised binary classifier based on hybrid Bell and Z bases measurement,which has a shallower circuit depth and is more suitable for implementation on near-term quantum devices.We demonstrate the performance of the quantum semi-supervised classifier on the Iris data set,and the simulation results show that the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier.This work opens a new path to quantum machine learning based on graphs.展开更多
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs...Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.展开更多
Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced va...Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced variational hybrid algorithm(EVQLSE)that leverages both quantum and classical computing paradigms to address the solution of linear equation systems.Initially,an innovative loss function is proposed,drawing inspiration from the similarity measure between two quantum states.This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver.Subsequently,a specialized parameterized quantum circuit structure is presented for small-scale linear systems,which exhibits powerful expressive capabilities.Through rigorous numerical analysis,the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm,and it obtained the best score compared to the others.Moreover,the expansion in system size is accompanied by an increase in the number of parameters,placing considerable strain on the training process for the algorithm.To address this challenge,an optimization strategy known as quantum parameter sharing is introduced,which proficiently minimizes parameter volume while adhering to exacting precision standards.Finally,EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.展开更多
The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or schedu...The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.展开更多
Quantum machine learning has made remarkable progress in many important tasks.However,the gate complexity of the initial state preparation is seldom considered in lots of quantum machine learning algorithms,making the...Quantum machine learning has made remarkable progress in many important tasks.However,the gate complexity of the initial state preparation is seldom considered in lots of quantum machine learning algorithms,making them non-end-to-end.Herein,we propose a quantum algorithm for the node embedding problem that maps a node graph's topological structure to embedding vectors.The resulting quantum embedding state can be used as an input for other quantum machine learning algorithms.With O(log(N))qubits to store the information of N nodes,our algorithm will not lose quantum advantage for the subsequent quantum information processing.Moreover,owing to the use of a parameterized quantum circuit with O(poly(log(N)))depth,the resulting state can serve as an efficient quantum database.In addition,we explored the measurement complexity of the quantum node embedding algorithm,which is the main issue in training parameters,and extended the algorithm to capture high-order neighborhood information between nodes.Finally,we experimentally demonstrated our algorithm on an nuclear magnetic resonance quantum processor to solve a graph model.展开更多
Diabetic Retinopathy(DR)is a common complication of diabetes mellitus that causes lesions on the retina that affect vision.Late detection of DR can lead to irreversible blindness.The manual diagnosis process of DR ret...Diabetic Retinopathy(DR)is a common complication of diabetes mellitus that causes lesions on the retina that affect vision.Late detection of DR can lead to irreversible blindness.The manual diagnosis process of DR retina fundus images by ophthalmologists is time consuming and costly.While,Classical Transfer learning models are extensively used for computer aided detection of DR;however,their maintenance costs limits detection performance rate.Therefore,Quantum Transfer learning is a better option to address this problem in an optimized manner.The significance of Hybrid quantum transfer learning approach includes that it performs heuristically.Thus,our proposed methodology aims to detect DR using a hybrid quantum transfer learning approach.To build our model we extract the APTOS 2019 Blindness Detection dataset from Kaggle and used inception-V3 pre-trained classical neural network for feature extraction and Variational Quantum classifier for stratification and trained our model on Penny Lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.Both models are built based on PyTorch machine learning library.We bring about a contrast performance rate between classical and quantum models.Our proposed model achieves an accuracy of 93%–96%on the quantum hybrid model and 85%accuracy rate on the classical model.So,quantum computing can harness quantum machine learning to do work with power and efficiency that is not possible for classical computers.展开更多
The problem of social workers visiting their patients at home is a class of combinatorial optimization problems and belongs to the class of problems known as NP-Hard. These problems require heuristic techniques to pro...The problem of social workers visiting their patients at home is a class of combinatorial optimization problems and belongs to the class of problems known as NP-Hard. These problems require heuristic techniques to provide an efficient solution in the best of cases. In this article, in addition to providing a detailed resolution of the social workers’ problem using the Quadratic Unconstrained Binary Optimization Problems (QUBO) formulation, an approach to mapping the inequality constraints in the QUBO form is given. Finally, we map it in the Hamiltonian of the Ising model to solve it with the Quantum Exact Solver and Variational Quantum Eigensolvers (VQE). The quantum feasibility of the algorithm will be tested on IBMQ computers.展开更多
The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment ...The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body.Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind.One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables,which provide more data density due to its exponential state-space growth.These hidden variables correspond to the amplitudes of each probable state of the system and allow for the modeling of various intricate aspects of measurable and observable physical quantities.This makes the quantum wave-functions powerful and felicitous to model cognitive states of the human mind,as it inherits the ability to efficiently couple the current context with past experiences temporally and spatially to approach an appropriate future cognitive state.This paper implements and compares some techniques like Variational Quantum Classifiers(VQC),quantum annealing classifiers,and hybrid quantum-classical neural networks,to harness the power of quantum computing for processing cognitive states of the mind by making use of EEG data.It also introduces a novel pipeline by logically combining some of the aforementioned techniques,to predict future cognitive responses.The preliminary results of these approaches are presented and are very encouraging with upto 61.53%validation accuracy.展开更多
Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic po...Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ωc, confinement strength of the quantum dot ω0, and dielectric constant ratio of the medium η; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.展开更多
Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Altho...Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.展开更多
Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data,while quantum machine learning algorithms could deal with big data with ease and provide exponential accelera...Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data,while quantum machine learning algorithms could deal with big data with ease and provide exponential acceleration over classical counterparts.Meanwhile,variational quantum algorithms are widely proposed to solve relevant computational problems on noisy,intermediate-scale quantum devices.In this paper,we apply variational quantum algorithms to quantum support vector machines and demonstrate a proof-of-principle numerical experiment of this algorithm.In addition,in the classification stage,fewer qubits,shorter circuit depth,and simpler measurement requirements show its superiority over the former algorithms.展开更多
In order to gain comprehensive knowledge of an arbitrary unknown quantum state,one feasible way is to reconstruct it,which can be realized by finding a series of quantum operations that can refactor the unitary evolut...In order to gain comprehensive knowledge of an arbitrary unknown quantum state,one feasible way is to reconstruct it,which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state.We design an adaptive framework that can reconstruct unknown quantum states at high fidelities,which utilizes SWAP test,parameterized quantum circuits(PQCs)and layerwise learning strategy.We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96%overlaps with original states on average using PQCs trained by our framework,revealing its high applicability to quantum systems of different scales theoretically.Moreover,we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states,illustrating the practical performance of our framework.For a certain reconstructing fidelity,our method can effectively construct a PQC of suitable length,avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits,which is of much significance when the scale of the target state is large and there is no a priori information on it.This advantage indicates that it can learn credible information of unknown states with limited quantum resources,giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.展开更多
The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential...The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential equations with multiple variables.In this paper,we present for the first time an algorithm for simulating ocean circulation on a quantum computer to achieve a computational speedup.Our approach begins with using primitive equations describing the ocean dynamics and then discretizing these equations in time and space.It results in several linear system of equations(LSE)with sparse coefficient matrices.We solve these sparse LSE using the variational quantum linear solver that enables the present algorithm to run easily on near-term quantum computers.Additionally,we develop a scheme for manipulating the data flow in the algorithm based on the quantum random access memory and l∞norm tomography technique.The efficiency of our algorithm is verified using multiple platforms,including MATLAB,a quantum virtual simulator,and a real quantum computer.The impact of the number of shots and the noise of quantum gates on the solution accuracy is also discussed.Our findings demonstrate that error mitigation techniques can efficiently improve the solution accuracy.With the rapid advancements in quantum computing,this work represents an important first step toward solving the challenging problem of simulating ocean circulation using quantum computers.展开更多
Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational...Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.展开更多
Machine learning has achieved dramatic success in a broad spectrum of applications.Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications,gi...Machine learning has achieved dramatic success in a broad spectrum of applications.Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications,giving rise to an emergent research frontier of quantum machine learning.Along this line,quantum classifiers,which are quantum devices that aim to solve classification problems in machine learning,have attracted tremendous attention recently.In this review,we give a relatively comprehensive overview for the studies of quantum classifiers,with a focus on recent advances.First,we will review a number of quantum classification algorithms,including quantum support vector machines,quantum kernel methods,quantum decision tree classifiers,quantum nearest neighbor algorithms,and quantum annealing based classifiers.Then,we move on to introduce the variational quantum classifiers,which are essentially variational quantum circuits for classifications.We will review different architectures for constructing variational quantum classifiers and introduce the barren plateau problem,where the training of quantum classifiers might be hindered by the exponentially vanishing gradient.In addition,the vulnerability aspect of quantum classifiers in the setting of adversarial learning and the recent experimental progress on different quantum classifiers will also be discussed.展开更多
We report a benchmark calculation for the Lipkin model in nuclear physics with a variational quantum eigensolver in quantum computing.Special attention is paid to the unitary coupled cluster(UCC)ansatz and structure l...We report a benchmark calculation for the Lipkin model in nuclear physics with a variational quantum eigensolver in quantum computing.Special attention is paid to the unitary coupled cluster(UCC)ansatz and structure learning(SL)ansatz for the trial wave function.Calculations with both the UCC and SL ansatz can reproduce the ground-state energy well;however,it is found that the calculation with the SL ansatz performs better than thatwith the UCC ansatz,and the SL ansatz has even fewer quantum gates than the UCC ansatz.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62076042 and 62102049)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC0535)+2 种基金the Key Research and Development Project of Sichuan Province(Grant Nos.2021YFSY0012 and 2021YFG0332)the Key Research and Development Project of Chengdu(Grant No.2021-YF05-02424-GX)the Innovation Team of Quantum Security Communication of Sichuan Province(Grant No.17TD0009).
文摘A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model will greatly improve its robustness.The existing method is to use automatic differentials or finite difference to obtain a gradient and use it to construct adversarial examples.This paper proposes an innovative method for constructing adversarial examples of quantum variational circuits.In this method,the gradient can be obtained by measuring the expected value of a quantum bit respectively in a series quantum circuit.This method can be used to construct the adversarial examples for a quantum variational circuit classifier.The implementation results prove the effectiveness of the proposed method.Compared with the existing method,our method requires fewer resources and is more efficient.
基金supported by the National Natural Science Foundation of China under Grant No.12105195.
文摘Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a function with variables necessitates at least d+1 function evaluations,resulting in a computational complexity of O(d).As the number of variables increases,the classical gradient estimation methods require substantial resources,ultimately surpassing the capabilities of classical computers.Fortunately,leveraging the principles of superposition and entanglement in quantum mechanics,quantum computers can achieve genuine parallel computing,leading to exponential acceleration over classical algorithms in some cases.In this paper,we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function.The complexity of this algorithm is just O(1).Building upon this approach,we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver(VQE),creating a pure quantum variational optimization algorithm.Compared with classical gradient-based optimization algorithm,this quantum optimization algorithm has remarkable complexity advantages,providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms,highlighting the potential of quantum computing in this field.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2017YFA0304300)the National Natural Science Foundation of China(Grant Nos.11934018,11747601,and 11975294)+4 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20200041)Beijing Natural Science Foundation(Grant No.Z200009)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS032)。
文摘Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.
基金Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202108)the National Natural Science Foundation of China(Grant No.U162271070)Scientific Research Fund of Zaozhuang University(Grant No.102061901).
文摘Label propagation is an essential semi-supervised learning method based on graphs,which has a broad spectrum of applications in pattern recognition and data mining.This paper proposes a quantum semi-supervised classifier based on label propagation.Considering the difficulty of graph construction,we develop a variational quantum label propagation(VQLP)method.In this method,a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.Furthermore,we design a quantum semi-supervised binary classifier based on hybrid Bell and Z bases measurement,which has a shallower circuit depth and is more suitable for implementation on near-term quantum devices.We demonstrate the performance of the quantum semi-supervised classifier on the Iris data set,and the simulation results show that the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier.This work opens a new path to quantum machine learning based on graphs.
基金supported by the National Natural Science Foundation of China(Grant No.62076042)the National Key Research and Development Plan of China,Key Project of Cyberspace Security Governance(Grant No.2022YFB3103103)the Key Research and Development Project of Sichuan Province(Grant Nos.2022YFS0571,2021YFSY0012,2021YFG0332,and 2020YFG0307)。
文摘Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.62172268 and 62302289the Shanghai Science and Technology Project under Grant Nos.21JC1402800 and 23YF1416200。
文摘Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced variational hybrid algorithm(EVQLSE)that leverages both quantum and classical computing paradigms to address the solution of linear equation systems.Initially,an innovative loss function is proposed,drawing inspiration from the similarity measure between two quantum states.This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver.Subsequently,a specialized parameterized quantum circuit structure is presented for small-scale linear systems,which exhibits powerful expressive capabilities.Through rigorous numerical analysis,the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm,and it obtained the best score compared to the others.Moreover,the expansion in system size is accompanied by an increase in the number of parameters,placing considerable strain on the training process for the algorithm.To address this challenge,an optimization strategy known as quantum parameter sharing is introduced,which proficiently minimizes parameter volume while adhering to exacting precision standards.Finally,EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0308700)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)。
文摘The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.
基金the National Natural Science Foundation of China(11974205 and 11774197)the National Key Research and Development Program of China(2017YFA0303700)+1 种基金the Key Research and Development Program of Guangdong Province(2018B030325002)the Beijing Nova Program(20230484345).
文摘Quantum machine learning has made remarkable progress in many important tasks.However,the gate complexity of the initial state preparation is seldom considered in lots of quantum machine learning algorithms,making them non-end-to-end.Herein,we propose a quantum algorithm for the node embedding problem that maps a node graph's topological structure to embedding vectors.The resulting quantum embedding state can be used as an input for other quantum machine learning algorithms.With O(log(N))qubits to store the information of N nodes,our algorithm will not lose quantum advantage for the subsequent quantum information processing.Moreover,owing to the use of a parameterized quantum circuit with O(poly(log(N)))depth,the resulting state can serve as an efficient quantum database.In addition,we explored the measurement complexity of the quantum node embedding algorithm,which is the main issue in training parameters,and extended the algorithm to capture high-order neighborhood information between nodes.Finally,we experimentally demonstrated our algorithm on an nuclear magnetic resonance quantum processor to solve a graph model.
文摘Diabetic Retinopathy(DR)is a common complication of diabetes mellitus that causes lesions on the retina that affect vision.Late detection of DR can lead to irreversible blindness.The manual diagnosis process of DR retina fundus images by ophthalmologists is time consuming and costly.While,Classical Transfer learning models are extensively used for computer aided detection of DR;however,their maintenance costs limits detection performance rate.Therefore,Quantum Transfer learning is a better option to address this problem in an optimized manner.The significance of Hybrid quantum transfer learning approach includes that it performs heuristically.Thus,our proposed methodology aims to detect DR using a hybrid quantum transfer learning approach.To build our model we extract the APTOS 2019 Blindness Detection dataset from Kaggle and used inception-V3 pre-trained classical neural network for feature extraction and Variational Quantum classifier for stratification and trained our model on Penny Lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.Both models are built based on PyTorch machine learning library.We bring about a contrast performance rate between classical and quantum models.Our proposed model achieves an accuracy of 93%–96%on the quantum hybrid model and 85%accuracy rate on the classical model.So,quantum computing can harness quantum machine learning to do work with power and efficiency that is not possible for classical computers.
文摘The problem of social workers visiting their patients at home is a class of combinatorial optimization problems and belongs to the class of problems known as NP-Hard. These problems require heuristic techniques to provide an efficient solution in the best of cases. In this article, in addition to providing a detailed resolution of the social workers’ problem using the Quadratic Unconstrained Binary Optimization Problems (QUBO) formulation, an approach to mapping the inequality constraints in the QUBO form is given. Finally, we map it in the Hamiltonian of the Ising model to solve it with the Quantum Exact Solver and Variational Quantum Eigensolvers (VQE). The quantum feasibility of the algorithm will be tested on IBMQ computers.
文摘The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body.Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind.One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables,which provide more data density due to its exponential state-space growth.These hidden variables correspond to the amplitudes of each probable state of the system and allow for the modeling of various intricate aspects of measurable and observable physical quantities.This makes the quantum wave-functions powerful and felicitous to model cognitive states of the human mind,as it inherits the ability to efficiently couple the current context with past experiences temporally and spatially to approach an appropriate future cognitive state.This paper implements and compares some techniques like Variational Quantum Classifiers(VQC),quantum annealing classifiers,and hybrid quantum-classical neural networks,to harness the power of quantum computing for processing cognitive states of the mind by making use of EEG data.It also introduces a novel pipeline by logically combining some of the aforementioned techniques,to predict future cognitive responses.The preliminary results of these approaches are presented and are very encouraging with upto 61.53%validation accuracy.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.E2013407119)the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia,China(Grant Nos.ZD20131008,Z2015149,Z2015219,and NJZY14189)
文摘Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ωc, confinement strength of the quantum dot ω0, and dielectric constant ratio of the medium η; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.
基金support from the Youth Talent Lifting Project(Grant No.2020-JCJQ-QT-030)the National Natural Science Foundation of China(Grant Nos.11905294,and 12274464)+7 种基金the China Postdoctoral Science Foundation,and the Open Research Fund from State Key Laboratory of High Performance Computing of China(Grant No.201901-01)support from the National Natural Science Foundation of China(Grant Nos.11805279,12074117,61833010,and 12061131011)support from the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the National Natural Science Foundation of China(Grant Nos.61832003,61872334,and 61801459)the National Natural Science Foundation of China(Grant No.12005015)the National Natural Science Foundation of China(Grant Nos.11974205,and 11774197)the National Key Research and Development Program of China(Grant No.2017YFA0303700)the Key Research and Development Program of Guangdong Province(Grant No.2018B030325002).
文摘Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.
基金supported by the Shandong Provincial Natural Science Foundation for Quantum Science No.ZR2020LLZ003,ZR2021LLZ002。
文摘Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data,while quantum machine learning algorithms could deal with big data with ease and provide exponential acceleration over classical counterparts.Meanwhile,variational quantum algorithms are widely proposed to solve relevant computational problems on noisy,intermediate-scale quantum devices.In this paper,we apply variational quantum algorithms to quantum support vector machines and demonstrate a proof-of-principle numerical experiment of this algorithm.In addition,in the classification stage,fewer qubits,shorter circuit depth,and simpler measurement requirements show its superiority over the former algorithms.
文摘In order to gain comprehensive knowledge of an arbitrary unknown quantum state,one feasible way is to reconstruct it,which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state.We design an adaptive framework that can reconstruct unknown quantum states at high fidelities,which utilizes SWAP test,parameterized quantum circuits(PQCs)and layerwise learning strategy.We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96%overlaps with original states on average using PQCs trained by our framework,revealing its high applicability to quantum systems of different scales theoretically.Moreover,we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states,illustrating the practical performance of our framework.For a certain reconstructing fidelity,our method can effectively construct a PQC of suitable length,avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits,which is of much significance when the scale of the target state is large and there is no a priori information on it.This advantage indicates that it can learn credible information of unknown states with limited quantum resources,giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.
基金supported by the National Natural Science Foundation of China(Grant No.12005212)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2021ZD19)。
文摘The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential equations with multiple variables.In this paper,we present for the first time an algorithm for simulating ocean circulation on a quantum computer to achieve a computational speedup.Our approach begins with using primitive equations describing the ocean dynamics and then discretizing these equations in time and space.It results in several linear system of equations(LSE)with sparse coefficient matrices.We solve these sparse LSE using the variational quantum linear solver that enables the present algorithm to run easily on near-term quantum computers.Additionally,we develop a scheme for manipulating the data flow in the algorithm based on the quantum random access memory and l∞norm tomography technique.The efficiency of our algorithm is verified using multiple platforms,including MATLAB,a quantum virtual simulator,and a real quantum computer.The impact of the number of shots and the noise of quantum gates on the solution accuracy is also discussed.Our findings demonstrate that error mitigation techniques can efficiently improve the solution accuracy.With the rapid advancements in quantum computing,this work represents an important first step toward solving the challenging problem of simulating ocean circulation using quantum computers.
基金the Engineering and Physical Sciences Research Council National Quantum Technology Hub in Networked Quantum Information Technology(EP/M013243/1)Japan Student Services Organization(JASSO)Student Exchange Support Program(Graduate Scholarship for Degree Seeking Students)+1 种基金the National Natural Science Foundation of China(U1730449)the European Quantum Technology Flagship project AQTION。
文摘Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they generally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices.We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians.Based on the variational quantum algorithms,we introduce Hamiltonian morphing together with an adaptive ans?tz for efficiently finding the ground state,and show the solution verification.Our algorithms are especially suitable for linear algebra problems with sparse matrices,and have wide applications in machine learning and optimisation problems.The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation.We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations.We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.
基金supported by the Start-up Fund from Tsinghua University(Grant No.53330300320)the National Natural Science Foundation of China(Grant No.12075128),the Shanghai Qi Zhi Institute。
文摘Machine learning has achieved dramatic success in a broad spectrum of applications.Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications,giving rise to an emergent research frontier of quantum machine learning.Along this line,quantum classifiers,which are quantum devices that aim to solve classification problems in machine learning,have attracted tremendous attention recently.In this review,we give a relatively comprehensive overview for the studies of quantum classifiers,with a focus on recent advances.First,we will review a number of quantum classification algorithms,including quantum support vector machines,quantum kernel methods,quantum decision tree classifiers,quantum nearest neighbor algorithms,and quantum annealing based classifiers.Then,we move on to introduce the variational quantum classifiers,which are essentially variational quantum circuits for classifications.We will review different architectures for constructing variational quantum classifiers and introduce the barren plateau problem,where the training of quantum classifiers might be hindered by the exponentially vanishing gradient.In addition,the vulnerability aspect of quantum classifiers in the setting of adversarial learning and the recent experimental progress on different quantum classifiers will also be discussed.
基金the financial support of Advanced Leading Graduate Course for Photon Sciencethe JSPS Grant-in-Aid for Early-Career Scientists (18K13549)the JSPS Grant-in-Aid for Scientific Research (S)(20H05648)
文摘We report a benchmark calculation for the Lipkin model in nuclear physics with a variational quantum eigensolver in quantum computing.Special attention is paid to the unitary coupled cluster(UCC)ansatz and structure learning(SL)ansatz for the trial wave function.Calculations with both the UCC and SL ansatz can reproduce the ground-state energy well;however,it is found that the calculation with the SL ansatz performs better than thatwith the UCC ansatz,and the SL ansatz has even fewer quantum gates than the UCC ansatz.
基金supported by the National Natural Science Foundation of China(91836303 and 11805197)the National Key R&D Program of China+2 种基金the Chinese Academy of Sciencesthe Anhui Initiative in Quantum Information Technologiesthe Science and Technology Commission of Shanghai Municipality(2019SHZDZX01)。