Free-space optical communication is a very promising alternative to fiber communication systems,in terms of ease of deployment and costs.Midinfrared light has several features of utter relevance for free-space applica...Free-space optical communication is a very promising alternative to fiber communication systems,in terms of ease of deployment and costs.Midinfrared light has several features of utter relevance for free-space applications:low absorption when propagating in the atmosphere even under adverse conditions,robustness of the wavefront during long-distance propagation,and absence of regulations and restrictions for this range of wavelengths.A proof-of-concept of high-speed transmission taking advantage of intersubband devices has recently been demonstrated,but this effort was limited by the short-distance optical path(up to 1 m).In this work,we study the possibility of building a long-range link using unipolar quantum optoelectronics.Two different detectors are used:an uncooled quantum cascade detector and a nitrogen-cooled quantum well-infrared photodetector.We evaluate the maximum data rate of our link in a back-to-back configuration before adding a Herriott cell to increase the length of the light path up to 31 m.By using pulse shaping,pre-and post-processing,we reach a record bitrate of 30 Gbit s−1 for both two-level(OOK)and four-level(PAM-4)modulation schemes for a 31-m propagation link and a bit error rate compatible with error-correction codes.展开更多
We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the rew;rsible efficiencies of the four different models. Based on the master equation...We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the rew;rsible efficiencies of the four different models. Based on the master equation, the expressions for the efficiency and power output are derived and the corresponding working regions are determined. Moreover, we particularly analyze the performance of a three-terminal hybrid quantum dot refrigerator. The performance characteristic curves and the optimal performance parameters are obtained. Finally, we discuss the influence of the nonradiative effects on the optimal performance parameters in detail.展开更多
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is perf...We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed in two lower flux states, and the excited state [2〉 would not participate in the procedure. The SQUIDs undergo no transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum iogic in SQUID-system.展开更多
We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity s...We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.展开更多
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of ...A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.展开更多
We constructed a 36-channel magnetocardiography(MCG) system based on low-Tc direct current(DC) superconducting quantum interference device(SQUID) magnetometers operated inside a magnetically shielded room(MSR)...We constructed a 36-channel magnetocardiography(MCG) system based on low-Tc direct current(DC) superconducting quantum interference device(SQUID) magnetometers operated inside a magnetically shielded room(MSR). Weakly damped SQUID magnetometers with large Steward–Mc Cumber parameter βc(βc≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient V / Φ larger than 420 μV/Φ0, the SQUID magnetometers had a white noise level of about 5.5 f T·Hz-1/2when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 d B were done successfully using the developed system.展开更多
We revisit a theoretical scheme to create quantum entanglement of two three-level superconducting quantuminterference devices (SQUIDs) with the help of an auxiliary SQUID.In this scenario,two three-level systems are c...We revisit a theoretical scheme to create quantum entanglement of two three-level superconducting quantuminterference devices (SQUIDs) with the help of an auxiliary SQUID.In this scenario,two three-level systems are coupledto a quantized cavity field and a classical external field and thus form dark states.The quantum entanglement can beproduced by a quantum measurement on the auxiliary SQUID.Our investigation emphasizes the quantum effect of theauxiliary SQUID.For the experimental feasibility and accessibility of the scheme,we calculate the time evolution of thewhole system including the auxiliary SQUID.To ensure the efficiency of generating quantum entanglement,relationsbetween the measurement time and dominate parameters of the system are analyzed according to detailed calculations.展开更多
We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs few...We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity-SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.展开更多
In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cav...In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cavity field and classical microwave pulses. In this scheme, the gate operation is realized in the subspace spanned by the two lower flux states of the SQUID system mud the population operator of the excited state has no effect on it. Thus the effect of decoherence caused from the levels of the SQUID system is possible to minimize. Under cavity decay, our strictly numerical simulation shows that it is also possible to realize the unconventional geometric phase gate. The experimental feasibility is discussed in detail.展开更多
A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs ...A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.展开更多
Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce....Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.展开更多
A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes...A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.展开更多
We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we fin...We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.展开更多
Cold-source field-effect transistors(CS-FETs)have been developed to overcome the major challenge of power dissipation in modern integrated circuits.Cold metals suitable for n-type CS-FETs have been proposed as the ide...Cold-source field-effect transistors(CS-FETs)have been developed to overcome the major challenge of power dissipation in modern integrated circuits.Cold metals suitable for n-type CS-FETs have been proposed as the ideal electrode to filter the high-energy electrons and break the thermal limit on subthreshold swing(SS).In this work,regarding the p-type CS-FETs,we propose TcX_(2) and ReX_(2)(X=S,Se)as the injection source to realize the sub-thermal switching for holes.First-principles calculations unveils the cold-metal characteristics of monolayer TcX_(2) and ReX_(2),possessing a sub-gap below the Fermi level and a decreasing DOS with energy.Quantum device simulations demonstrate that TcX_(2) and ReX_(2) can enable the cold source effects in WSe_(2) p-type FETs,achieving steep SS of 29-38 mV/dec and high on/off ratios of(2.3-5.6)×10^(7).Moreover,multilayer Re S2retains the cold metal characteristic,thus ensuring similar CS-FET performances to that of the monolayer source.This work underlines the significance of cold metals for the design of p-type CS-FETs.展开更多
Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers...Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.展开更多
We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance at...We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.展开更多
Quantum tunneling with band-structure engineering has been feasibly developed for many applications in electrical,optoelectrical,and magnetic devices.It relies on layer-by-layer design and fabrication,which is an inte...Quantum tunneling with band-structure engineering has been feasibly developed for many applications in electrical,optoelectrical,and magnetic devices.It relies on layer-by-layer design and fabrication,which is an interdisciplinary research field covering material science and technology.Ever since the discovery of two-dimensional(2 D)layered materials,tunneling devices based on 2D van der Waals(vd W)heterostructures have been extensively studied as potential next-generation devices.2 D materials are thin at the atomic scale and extremely flat without surface dangling bonds.Because of these unique characteristics,2 D vd W heterostructures offer superior tunneling performance that reaches the benchmark of traditional Si technology and possess additional ability to scale down device size.Here,we comprehensively review quantum tunneling in 2 D vd W heterostructures,in addition to their unique mechanisms and applications.Moreover,we analyze the possibilities and challenges currently faced by 2 D tunneling devices and provide a perspective on their exploitation for advanced future applications.The investigation of technology-and performancecontrol of 2 D tunneling devices is at their beginning stages;however,these devices should emerge as competitive candidates for realizing low-power supply,fast-speed capability,and high-frequency operating devices.展开更多
We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavit...We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity.During this process,no transfer of quantum information between the SQUIDs and cavity is required.The cavity field is only virtually excited.The scheme is insensitive to cavity decay.Therefore,the scheme can be experimentally realized in the range of current cavity QED techniques.展开更多
We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qub...We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.展开更多
ZnO nanoparticles are widely used for the electron transport layers(ETLs)of quantum dots light emitting devices(QLEDs).In this work we show that incorporating fluorine(F)into the ZnO ETL results in significant enhance...ZnO nanoparticles are widely used for the electron transport layers(ETLs)of quantum dots light emitting devices(QLEDs).In this work we show that incorporating fluorine(F)into the ZnO ETL results in significant enhancement in device electroluminescence stability,leading to LT50 at 100 cd m^(−2) of 2,370,000 h in red QLED,47X longer than the control devices.X-ray photo-electron spectroscopy,time-of-flight secondary ion mass spectroscopy,photoluminescence and electrical measurements show that the F passivates oxygen vacancies and reduces electron traps in ZnO.Transient photoluminescence versus bias measurements and capacitance-voltage-luminance measurements reveal that the CF4 plasma-treated ETLs lead to increased electron concentration in the QD and the QD/hole transport layer interface,subsequently decreasing hole accumulation,and hence the higher stability.The findings provide new insights into the critical roles that optimizing charge distribution across the layers play in influencing stability and present a novel and simple approach for extending QLED lifetimes.展开更多
基金the financial support of the Direction Générale de l’Armement(DGA)the ENS-Thales Chair,ANR project LIGNEDEMIR(ANR-18CE09-0035)+1 种基金FETOpen 2018–2020 Horizon 2020 projects cFLOW(Grant No.828893)QOMBS(Grant No.820419)and CNRS Renatech network.
文摘Free-space optical communication is a very promising alternative to fiber communication systems,in terms of ease of deployment and costs.Midinfrared light has several features of utter relevance for free-space applications:low absorption when propagating in the atmosphere even under adverse conditions,robustness of the wavefront during long-distance propagation,and absence of regulations and restrictions for this range of wavelengths.A proof-of-concept of high-speed transmission taking advantage of intersubband devices has recently been demonstrated,but this effort was limited by the short-distance optical path(up to 1 m).In this work,we study the possibility of building a long-range link using unipolar quantum optoelectronics.Two different detectors are used:an uncooled quantum cascade detector and a nitrogen-cooled quantum well-infrared photodetector.We evaluate the maximum data rate of our link in a back-to-back configuration before adding a Herriott cell to increase the length of the light path up to 31 m.By using pulse shaping,pre-and post-processing,we reach a record bitrate of 30 Gbit s−1 for both two-level(OOK)and four-level(PAM-4)modulation schemes for a 31-m propagation link and a bit error rate compatible with error-correction codes.
基金Supported by the National Natural Science Foundation of China under Grant No 11365015
文摘We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the rew;rsible efficiencies of the four different models. Based on the master equation, the expressions for the efficiency and power output are derived and the corresponding working regions are determined. Moreover, we particularly analyze the performance of a three-terminal hybrid quantum dot refrigerator. The performance characteristic curves and the optimal performance parameters are obtained. Finally, we discuss the influence of the nonradiative effects on the optimal performance parameters in detail.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10574126.
文摘We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed in two lower flux states, and the excited state [2〉 would not participate in the procedure. The SQUIDs undergo no transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum iogic in SQUID-system.
基金Project supported partially by the National Natural Science Foundation of China (Grant No 60678022), the Doctoral Fund of Ministry of Education of China (Grant No 20060357008). Anhui Provincial Natural Science Foundation (Grant No 070412060), the Key Program of the Education, Department of Anhui Province (Grant No 2006KJ070A), the Program of the Education, Department of Anhui Province (Grant No 2006KJ057B) and the Talent Foundation of Anhui University, Anhui Key Laboratory of Information Materials and Devices (Anhui University).
文摘We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.
基金Project supported by the National Natural Science Foundation of China (Grant No.11704051)the Qinglan Project of the Jiangsu Education Department and the Research Foundation of Six Talents Peaks Project in Jiangsu Province,China (Grant No.XNY-093)。
文摘A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.
基金Project supported by"One Hundred Persons Project"of the Chinese Academy of Sciences and the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)
文摘We constructed a 36-channel magnetocardiography(MCG) system based on low-Tc direct current(DC) superconducting quantum interference device(SQUID) magnetometers operated inside a magnetically shielded room(MSR). Weakly damped SQUID magnetometers with large Steward–Mc Cumber parameter βc(βc≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient V / Φ larger than 420 μV/Φ0, the SQUID magnetometers had a white noise level of about 5.5 f T·Hz-1/2when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 d B were done successfully using the developed system.
基金The project supported by National Natural Science Foundation of China under Grant No.10474104the National Fundamental Research Program of China under Grant No.2001CB309310
文摘We revisit a theoretical scheme to create quantum entanglement of two three-level superconducting quantuminterference devices (SQUIDs) with the help of an auxiliary SQUID.In this scenario,two three-level systems are coupledto a quantized cavity field and a classical external field and thus form dark states.The quantum entanglement can beproduced by a quantum measurement on the auxiliary SQUID.Our investigation emphasizes the quantum effect of theauxiliary SQUID.For the experimental feasibility and accessibility of the scheme,we calculate the time evolution of thewhole system including the auxiliary SQUID.To ensure the efficiency of generating quantum entanglement,relationsbetween the measurement time and dominate parameters of the system are analyzed according to detailed calculations.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774192)
文摘We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity-SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.
基金The project supported by National Fundamental Research Program of China under Grant No.2005CB724508National Natural Science Foundation of China under Grant Nos.60478029,90503010,10634060,and 10575040
文摘In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cavity field and classical microwave pulses. In this scheme, the gate operation is realized in the subspace spanned by the two lower flux states of the SQUID system mud the population operator of the excited state has no effect on it. Thus the effect of decoherence caused from the levels of the SQUID system is possible to minimize. Under cavity decay, our strictly numerical simulation shows that it is also possible to realize the unconventional geometric phase gate. The experimental feasibility is discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.21302122)the Science and Technology Commission of Shanghai Municipality,China(Grant No.13ZR1416600)
文摘A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61106123 and 61275034the National Basic Research Program of China under Grant No 2013CB328705
文摘Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.
基金Supported by the State Key Program for Basic Research of China under Grant No 2011CBA00304the National Natural Science Foundation of China under Grant No 60836001the Tsinghua University Initiative Scientific Research Program under Grant No 20131089314
文摘A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.
文摘We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.
基金supported by the National Natural Science Foundation of China (Grant Nos.62034006,92264201,and 62104134)the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2023QF076 and ZR2023QF054)。
文摘Cold-source field-effect transistors(CS-FETs)have been developed to overcome the major challenge of power dissipation in modern integrated circuits.Cold metals suitable for n-type CS-FETs have been proposed as the ideal electrode to filter the high-energy electrons and break the thermal limit on subthreshold swing(SS).In this work,regarding the p-type CS-FETs,we propose TcX_(2) and ReX_(2)(X=S,Se)as the injection source to realize the sub-thermal switching for holes.First-principles calculations unveils the cold-metal characteristics of monolayer TcX_(2) and ReX_(2),possessing a sub-gap below the Fermi level and a decreasing DOS with energy.Quantum device simulations demonstrate that TcX_(2) and ReX_(2) can enable the cold source effects in WSe_(2) p-type FETs,achieving steep SS of 29-38 mV/dec and high on/off ratios of(2.3-5.6)×10^(7).Moreover,multilayer Re S2retains the cold metal characteristic,thus ensuring similar CS-FET performances to that of the monolayer source.This work underlines the significance of cold metals for the design of p-type CS-FETs.
基金Project supported by the Fund from China National Space Administration (CNSA) (Grant No. D050104)the Fund for Low Energy Gamma Ray Detection Research Based on SQUID Techniquethe Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences。
文摘Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603900)in part by the Russian Science Foundation(RSCF)(Grant No.19-72-10016-P).
文摘We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.
基金supported by China Postdoctoral Science Foundation (2020TQ0199 and 2020M682880)the Science and Technology Innovation Commission of Shenzhen (JCYJ20180305125345378)+1 种基金Guangdong Basic and Applied Basic Research Foundation (2020B1515020051)the National Natural Science Foundation of China (51702219 and 61975134)
文摘Quantum tunneling with band-structure engineering has been feasibly developed for many applications in electrical,optoelectrical,and magnetic devices.It relies on layer-by-layer design and fabrication,which is an interdisciplinary research field covering material science and technology.Ever since the discovery of two-dimensional(2 D)layered materials,tunneling devices based on 2D van der Waals(vd W)heterostructures have been extensively studied as potential next-generation devices.2 D materials are thin at the atomic scale and extremely flat without surface dangling bonds.Because of these unique characteristics,2 D vd W heterostructures offer superior tunneling performance that reaches the benchmark of traditional Si technology and possess additional ability to scale down device size.Here,we comprehensively review quantum tunneling in 2 D vd W heterostructures,in addition to their unique mechanisms and applications.Moreover,we analyze the possibilities and challenges currently faced by 2 D tunneling devices and provide a perspective on their exploitation for advanced future applications.The investigation of technology-and performancecontrol of 2 D tunneling devices is at their beginning stages;however,these devices should emerge as competitive candidates for realizing low-power supply,fast-speed capability,and high-frequency operating devices.
基金supported by the National Natural Science Foundation of China (Grant No.10674001)the Program of the Education Department of Anhui Province (Grant No.KJ2007A002)
文摘We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity.During this process,no transfer of quantum information between the SQUIDs and cavity is required.The cavity field is only virtually excited.The scheme is insensitive to cavity decay.Therefore,the scheme can be experimentally realized in the range of current cavity QED techniques.
基金supported by the National Natural Science Foundations of China (Grant Nos. 10947017/A05 and 11074190)the Science Foundation of the Key Laboratory of Novel Thin Film Solar Cells, China (Grant No. KF200912)the Graduates' Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831)
文摘We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.
基金Partial support to this work by the Natural Sciences & Engineering Research Council of Canada (NSERC) is gratefully acknowledged
文摘ZnO nanoparticles are widely used for the electron transport layers(ETLs)of quantum dots light emitting devices(QLEDs).In this work we show that incorporating fluorine(F)into the ZnO ETL results in significant enhancement in device electroluminescence stability,leading to LT50 at 100 cd m^(−2) of 2,370,000 h in red QLED,47X longer than the control devices.X-ray photo-electron spectroscopy,time-of-flight secondary ion mass spectroscopy,photoluminescence and electrical measurements show that the F passivates oxygen vacancies and reduces electron traps in ZnO.Transient photoluminescence versus bias measurements and capacitance-voltage-luminance measurements reveal that the CF4 plasma-treated ETLs lead to increased electron concentration in the QD and the QD/hole transport layer interface,subsequently decreasing hole accumulation,and hence the higher stability.The findings provide new insights into the critical roles that optimizing charge distribution across the layers play in influencing stability and present a novel and simple approach for extending QLED lifetimes.