Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, thei...Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.展开更多
According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which...According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which have been observed in quantum dots without a p–n junction at an external bias.Here,we experimentally observed more than 88% of the resonantly excited photo carriers escaping from In As quantum dots embedded in a short-circuited p–n junction to form photocurrent.The phenomenon cannot be explained by thermionic emission,tunneling process,and intermediate-band theories.A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p–n junction.The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.展开更多
By using the traditional perturbation method, we obtain the nonlinear Sehrodinger equation for one-dimensional Schrodinger-Poisson system. Some of its solutions can explain previous results.
By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance sp...By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance spectrum are mainly focused. The previous prediction about their positions by other theoretical approaches is checked. In addition, a function of spin filtering is suggested based on the interplay of the resonance and antiresonance in this T-shaped quantum waveguide.展开更多
A theoretical investigation has been carried out on the propagation of the ion–acoustic(IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of...A theoretical investigation has been carried out on the propagation of the ion–acoustic(IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries(K-dV), modified K-dV(m K-dV), and mixed m K-dV(mm K-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features(phase speed, amplitude, width,etc.) of the IA solitary waves(SWs), the SWs solutions of the K-dV, m K-dV, and mm K-d V are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects(arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g.,white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser–solid matter interaction experiments, etc., are mentioned.展开更多
The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plas...The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plasma waves of two parts of the 2D quantum electron gas:gated and ungated regions.The results show that the radiation frequency and the increment(radiation power)in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas.The quantum effects always enhance the radiation power and enlarge the region of instability in both cases.This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process.展开更多
Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition ...Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition of electrons for both symmetric and asymmetric cases with three energy levels of conduction bands. The electronic states in these structures are obtained using a finite element difference method. Based on a compact density matrix approach, the optical absorption induced by intersubband transition of electrons at room temperature is discussed. The results reveal that the peak positions and heights of intersubband optical absorption coefficients(IOACs) of DPQWs are sensitive to the barrier thickness, depending on Al component. Furthermore, external electric fields result in the decrease of peak, and play an important role in the blue shifts of absorption spectra due to electrons excited from ground state to the first and second excited states. It is found that the peaks of IOACs are smaller in asymmetric DPQWs than in symmetric ones. The results also indicate that the adjustable extent of incident photon energy for DPQW is larger than for a square one of a similar size. Our results are helpful in experiments and device fabrication.展开更多
We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we fin...We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.展开更多
The electronic structure and spectra of [Mo3O4-nSn]^(4+)(n=0-4) cations were calculated by means of INDO/CI quantum chemistry method to account for the experimental data of their spectra in water solutions.
In the first step, the Joule-Lenz dissipation energy specified for the electron transitions between two neighbouring quantum levels in the hydrogen atom has been compared with the electromagnetic energy of emission fr...In the first step, the Joule-Lenz dissipation energy specified for the electron transitions between two neighbouring quantum levels in the hydrogen atom has been compared with the electromagnetic energy of emission from a single level. Both the electric and magnetic vectors entering the Pointing vector of the electromagnetic field are referred to the one-electron motion performed along an orbit in the atom. In the next step, a similar comparison of emission rates is performed for the harmonic oscillator. Formally a full agreement of the Joule-Lenz and electromagnetic expressions for the energy emission rates has been attained.展开更多
We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state ...The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.展开更多
The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special r...The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.展开更多
The energy emitted by an electron in course of its transition between two quantum levels can be considered as a dissipated energy. This energy is obtained within a definite interval of time. The problem of the size of...The energy emitted by an electron in course of its transition between two quantum levels can be considered as a dissipated energy. This energy is obtained within a definite interval of time. The problem of the size of the time interval necessary for transitions is examined both on the ground of the quantum approach as well as classical electrodynamics. It is found that in fact the emission time approaches the time interval connected with acceleration of a classical velocity of the electron particle from one of its quantum levels to a neighbouring one.展开更多
Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum a...Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of the frequency chirp parameter at the moment t = 0 leads the pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either a low frequency strong field or a high frequency weak field but sensitive to the parameters of large frequency chirp added in a high frequency weak field.展开更多
The time of the energy emission between two neighbouring electron levels in the hydrogen atom has been calculated first on the basis of the quantum aspects of the Joule-Lenz law, next this time is approached with the ...The time of the energy emission between two neighbouring electron levels in the hydrogen atom has been calculated first on the basis of the quantum aspects of the Joule-Lenz law, next this time is approached with the aid of the electrodynamical parameters characteristic for the electron motion in the atom. Both methods indicate a similar result, namely that the time of emission is close to the time period of the electromagnetic wave produced in course of the emission. As a by-product of calculations, the formula representing the radius of the electron microparticle is obtained from a simple combination of the expressions for the Bohr magnetic moment and a quantum of the magnetic flux.展开更多
A scheme is presented to generate atomic entanglement by detecting the transmission spectrum of a coupled- cavity system. In the scheme, two 3-level atoms are trapped in separate cavities coupled by a short optical fi...A scheme is presented to generate atomic entanglement by detecting the transmission spectrum of a coupled- cavity system. In the scheme, two 3-level atoms are trapped in separate cavities coupled by a short optical fiber, and the atomic entanglement could be realized in a heralded way by detecting the transmission spectrum of the coupled-cavity system.展开更多
A scheme is proposed for involving programmable quantum logic gates via teleportation,which is a unique technique in quantum mechanics.In our scheme,considering the inevitable decoherence caused by noisy environment,t...A scheme is proposed for involving programmable quantum logic gates via teleportation,which is a unique technique in quantum mechanics.In our scheme,considering the inevitable decoherence caused by noisy environment,the quantum states are not maximally entangled.We show the implementation of single qubit quantum gates and controlled-NOT(C-NOT) gate,which are universal quantum gates.Hence,any quantum gate can be implemented by using teleportation withnon-maximally entangled states.Furthermore,two schemes in differet connections of universal gates are proposed and compared,and our results show the parallel connection outperforms the cascade connection.展开更多
We investigate the transitions between energy levels and parity symmetry in an effective two-level polar molecule system strongly coupled with a quantized harmonic oscillator. By the dressed-state perturbation theory,...We investigate the transitions between energy levels and parity symmetry in an effective two-level polar molecule system strongly coupled with a quantized harmonic oscillator. By the dressed-state perturbation theory, the transition diagrams between the dressed-state energy levels are presented clearly and show that the odd (even) parity symmetry is broken by the permanent dipole moment (PDM) of the polar molecules. By the analytical and numerical methods, we find that when the coupling strength and the PDM increase, the more frequency components are induced by the counter-rotating terms and PDM.展开更多
A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical me...A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical mechanical stress (σ^M) originates from lat- tice strain (e), following Hooke's law: σ^M=Cε, where C is elastic constant matrix. Recently, a new concept of quantum electronic stress (o-QE) is introduced to elucidate the extrinsic electronic effects on the stress state of solids and thin films, which follows a quantum analog of classical Hooke's law: ~QE=E(An), where E is the deformation potential of electronic states and An is the variation of electron density. Here, we present mathematical derivation of both the classical and quantum Hooke's law from density functional theory. We further discuss the physical origin of quantum electronic stress, arising purely from electronic excitation and perturbation in the absence of lattice strain (g=0), and its relation to the degeneracy pressure of electrons in solid and their interaction with the lattice.展开更多
基金Project supported by the National Basic Research Program of China (Grant No 2003CB314901)the National Natural Science Foundation of China (Grant No 60644004)the High School Innovation and Introducing Talent Project of China (B07005)
文摘Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574362,61210014,11374340,and 11474205)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515001)
文摘According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which have been observed in quantum dots without a p–n junction at an external bias.Here,we experimentally observed more than 88% of the resonantly excited photo carriers escaping from In As quantum dots embedded in a short-circuited p–n junction to form photocurrent.The phenomenon cannot be explained by thermionic emission,tunneling process,and intermediate-band theories.A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p–n junction.The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.
文摘By using the traditional perturbation method, we obtain the nonlinear Sehrodinger equation for one-dimensional Schrodinger-Poisson system. Some of its solutions can explain previous results.
文摘By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance spectrum are mainly focused. The previous prediction about their positions by other theoretical approaches is checked. In addition, a function of spin filtering is suggested based on the interplay of the resonance and antiresonance in this T-shaped quantum waveguide.
文摘A theoretical investigation has been carried out on the propagation of the ion–acoustic(IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries(K-dV), modified K-dV(m K-dV), and mixed m K-dV(mm K-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features(phase speed, amplitude, width,etc.) of the IA solitary waves(SWs), the SWs solutions of the K-dV, m K-dV, and mm K-d V are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects(arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g.,white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser–solid matter interaction experiments, etc., are mentioned.
基金supported by National Natural Science Foundation of China(No.10975114)
文摘The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plasma waves of two parts of the 2D quantum electron gas:gated and ungated regions.The results show that the radiation frequency and the increment(radiation power)in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas.The quantum effects always enhance the radiation power and enlarge the region of instability in both cases.This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process.
基金Project supported by the National Natural Science Foundation of China(Grant No.61274098)
文摘Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition of electrons for both symmetric and asymmetric cases with three energy levels of conduction bands. The electronic states in these structures are obtained using a finite element difference method. Based on a compact density matrix approach, the optical absorption induced by intersubband transition of electrons at room temperature is discussed. The results reveal that the peak positions and heights of intersubband optical absorption coefficients(IOACs) of DPQWs are sensitive to the barrier thickness, depending on Al component. Furthermore, external electric fields result in the decrease of peak, and play an important role in the blue shifts of absorption spectra due to electrons excited from ground state to the first and second excited states. It is found that the peaks of IOACs are smaller in asymmetric DPQWs than in symmetric ones. The results also indicate that the adjustable extent of incident photon energy for DPQW is larger than for a square one of a similar size. Our results are helpful in experiments and device fabrication.
文摘We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.
文摘The electronic structure and spectra of [Mo3O4-nSn]^(4+)(n=0-4) cations were calculated by means of INDO/CI quantum chemistry method to account for the experimental data of their spectra in water solutions.
文摘In the first step, the Joule-Lenz dissipation energy specified for the electron transitions between two neighbouring quantum levels in the hydrogen atom has been compared with the electromagnetic energy of emission from a single level. Both the electric and magnetic vectors entering the Pointing vector of the electromagnetic field are referred to the one-electron motion performed along an orbit in the atom. In the next step, a similar comparison of emission rates is performed for the harmonic oscillator. Formally a full agreement of the Joule-Lenz and electromagnetic expressions for the energy emission rates has been attained.
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
文摘The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.
文摘The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.
文摘The energy emitted by an electron in course of its transition between two quantum levels can be considered as a dissipated energy. This energy is obtained within a definite interval of time. The problem of the size of the time interval necessary for transitions is examined both on the ground of the quantum approach as well as classical electrodynamics. It is found that in fact the emission time approaches the time interval connected with acceleration of a classical velocity of the electron particle from one of its quantum levels to a neighbouring one.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475026 and 11175023)
文摘Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of the frequency chirp parameter at the moment t = 0 leads the pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either a low frequency strong field or a high frequency weak field but sensitive to the parameters of large frequency chirp added in a high frequency weak field.
文摘The time of the energy emission between two neighbouring electron levels in the hydrogen atom has been calculated first on the basis of the quantum aspects of the Joule-Lenz law, next this time is approached with the aid of the electrodynamical parameters characteristic for the electron motion in the atom. Both methods indicate a similar result, namely that the time of emission is close to the time period of the electromagnetic wave produced in course of the emission. As a by-product of calculations, the formula representing the radius of the electron microparticle is obtained from a simple combination of the expressions for the Bohr magnetic moment and a quantum of the magnetic flux.
基金supported by the National Natural Sciences Foundation of China(Grant Nos.11204080,11274112,91321101,and 61275215)the Fundamental Research Funds for the Central Universities(Grant No.WM1313003)
文摘A scheme is presented to generate atomic entanglement by detecting the transmission spectrum of a coupled- cavity system. In the scheme, two 3-level atoms are trapped in separate cavities coupled by a short optical fiber, and the atomic entanglement could be realized in a heralded way by detecting the transmission spectrum of the coupled-cavity system.
基金supported by the National Natural Science Foundation of China(No.60904034 and 61104002)
文摘A scheme is proposed for involving programmable quantum logic gates via teleportation,which is a unique technique in quantum mechanics.In our scheme,considering the inevitable decoherence caused by noisy environment,the quantum states are not maximally entangled.We show the implementation of single qubit quantum gates and controlled-NOT(C-NOT) gate,which are universal quantum gates.Hence,any quantum gate can be implemented by using teleportation withnon-maximally entangled states.Furthermore,two schemes in differet connections of universal gates are proposed and compared,and our results show the parallel connection outperforms the cascade connection.
基金supported by the National Natural Sciences Foundation of China(Nos.61605225,11547035,11505100,and 61475139)the Natural Science Foundation of Shanghai(No.16ZR1448400)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB01010200)the Hundred Talents Program of the Chinese Academy of Sciences(No.Y321311401)the National 973 Program of China(No.2013CB329501)the Shandong Provincial Natural Science Foundation(No.ZR2015AQ007)the Zhejiang Provincial Natural Science Foundation(No.LQ13A040006)
文摘We investigate the transitions between energy levels and parity symmetry in an effective two-level polar molecule system strongly coupled with a quantized harmonic oscillator. By the dressed-state perturbation theory, the transition diagrams between the dressed-state energy levels are presented clearly and show that the odd (even) parity symmetry is broken by the permanent dipole moment (PDM) of the polar molecules. By the analytical and numerical methods, we find that when the coupling strength and the PDM increase, the more frequency components are induced by the counter-rotating terms and PDM.
基金supported by the DOE-BES program(Grant No.DE-04ER46148)NSF-MRSEC(Grant No.DMR-1121252)
文摘A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical mechanical stress (σ^M) originates from lat- tice strain (e), following Hooke's law: σ^M=Cε, where C is elastic constant matrix. Recently, a new concept of quantum electronic stress (o-QE) is introduced to elucidate the extrinsic electronic effects on the stress state of solids and thin films, which follows a quantum analog of classical Hooke's law: ~QE=E(An), where E is the deformation potential of electronic states and An is the variation of electron density. Here, we present mathematical derivation of both the classical and quantum Hooke's law from density functional theory. We further discuss the physical origin of quantum electronic stress, arising purely from electronic excitation and perturbation in the absence of lattice strain (g=0), and its relation to the degeneracy pressure of electrons in solid and their interaction with the lattice.