期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Feedback control and quantum error correction assisted quantum multi-parameter estimation
1
作者 洪海源 鲁秀娟 匡森 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期260-267,共8页
Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it i... Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it is hard to achieve this limit since noises are inclined to destroy quantum coherence and entanglement.In this paper,a combined control scheme with feedback and quantum error correction(QEC)is proposed to achieve the Heisenberg limit in the presence of spontaneous emission,where the feedback control is used to protect a stabilizer code space containing an optimal probe state and an additional control is applied to eliminate the measurement incompatibility among three parameters.Although an ancilla system is necessary for the preparation of the optimal probe state,our scheme does not require the ancilla system to be noiseless.In addition,the control scheme in this paper has a low-dimensional code space.For the three components of a magnetic field,it can achieve the highest estimation precision with only a 2-dimensional code space,while at least a4-dimensional code space is required in the common optimal error correction protocols. 展开更多
关键词 quantum multi-parameter estimation feedback control quantum error correction Heisenberg limit
下载PDF
Secure deterministic communication in a quantum loss channel using quantum error correction code
2
作者 吴双 梁林梅 李承祖 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1229-1232,共4页
The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information ... The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged. 展开更多
关键词 quantum error correction quantum loss channel deterministic communication
下载PDF
Quantum computation and error correction based on continuous variable cluster states 被引量:4
3
作者 Shuhong Hao Xiaowei Deng +3 位作者 Yang Liu Xiaolong Su Changde Xie Kunchi Peng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期18-27,共10页
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w... Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables. 展开更多
关键词 quantum computation quantum error correction continuous variables cluster state
下载PDF
Bosonic quantum error correction codes in superconducting quantum circuits 被引量:6
4
作者 Weizhou Cai Yuwei Ma +2 位作者 Weiting Wang Chang-Ling Zou Luyan Sun 《Fundamental Research》 CAS 2021年第1期50-67,共18页
Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect q... Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect quantum information against noise is vital for universal and scalable quantum computation.Among many different experimental platforms,superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC.During the last few years,bosonic QEC is demonstrated to reach the break-even point,i.e.the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system.Beyond that,universal gate sets and fault-tolerant operations on the bosonic codes are also realized,pushing quantum information processing towards the QEC era.In this article,we review the recent progress of the bosonic codes,including the Gottesman-Kitaev-Preskill codes,cat codes,and binomial codes,and discuss the opportunities of bosonic codes in various quantum applications,ranging from fault-tolerant quantum computation to quantum metrology.We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms. 展开更多
关键词 quantum error correction Bosonic codes Superconducting quantum circuits quantum communication quantum simulation quantum metrology
原文传递
Unitary Application of the Quantum Error Correction Codes 被引量:1
5
作者 游波 许可 吴小华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第9期377-380,共4页
For applying the perfect code to transmit quantum information over a noise channel,the standard protocol contains four steps:the encoding,the noise channel,the error-correction operation,and the decoding.In present wo... For applying the perfect code to transmit quantum information over a noise channel,the standard protocol contains four steps:the encoding,the noise channel,the error-correction operation,and the decoding.In present work,we show that this protocol can be simplified.The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation.We also offer a quantum circuit,which can correct the arbitrary single-qubit errors. 展开更多
关键词 standard quantum error correction complete unitary transformation quantum circuit
原文传递
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
6
作者 Hao-Wen Wang Yun-Jia Xue +2 位作者 Yu-Lin Ma Nan Hua Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(CNN)decoder
下载PDF
Toward Constructing a Continuous Logical Operator for Error-Corrected Quantum Sensing
7
作者 Cameron Cianci 《Journal of Quantum Information Science》 2023年第2期45-55,共11页
Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finit... Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code. 展开更多
关键词 quantum Sensing quantum error correction Steane Code Heisenberg Limit
下载PDF
Quantum Codes Do Not Increase Fidelity against Isotropic Errors
8
作者 Jesús Lacalle Luis Miguel Pozo-Coronado +1 位作者 André Luiz Fonseca de Oliveira Rafael Martín-Cuevas 《Journal of Applied Mathematics and Physics》 2023年第2期555-571,共17页
In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved i... In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction. 展开更多
关键词 quantum error Correcting Codes Isotropic quantum Computing errors quantum Computing error Fidelity quantum Computing error Variance
下载PDF
An overview of quantum error mitigation formulas
9
作者 Dayue Qin Xiaosi Xu Ying Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期1-12,共12页
Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy... Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work. 展开更多
关键词 quantum error mitigation quantum computing quantum error correction noisy intermediate-scale quantum
下载PDF
Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
10
作者 樊继豪 夏沛文 +1 位作者 戴迪康 陈一骁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期241-248,共8页
Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan... Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits. 展开更多
关键词 asymmetric quantum channel entanglement fidelity entanglement-assisted quantum error correction code quantum memory channel
下载PDF
Recurrent neural network decoding of rotated surface codes based on distributed strategy
11
作者 李帆 李熬庆 +1 位作者 甘启迪 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期322-330,共9页
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre... Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder. 展开更多
关键词 quantum error correction rotated surface code recurrent neural network distributed strategy
下载PDF
Decoding topological XYZ^(2) codes with reinforcement learning based on attention mechanisms
12
作者 陈庆辉 姬宇欣 +2 位作者 王柯涵 马鸿洋 纪乃华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期262-270,共9页
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co... Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes. 展开更多
关键词 quantum error correction topological quantum stabilizer code reinforcement learning attention mechanism
下载PDF
Multiparty Quantum Secret Sharing Using Quantum Fourier Transform 被引量:3
13
作者 HUANG Da-Zu CHEN Zhi-Gang GUO Ying 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第2期221-226,共6页
A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encode... A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation. 展开更多
关键词 quantum secret sharing quantum Fourier transform quantum error correction code
下载PDF
Jointly-check iterative decoding algorithm for quantum sparse graph codes 被引量:1
14
作者 邵军虎 白宝明 +1 位作者 林伟 周林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期116-122,共7页
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ... For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement. 展开更多
关键词 quantum error correction sparse graph code iterative decoding belief-propagation algorithm
下载PDF
Encoding entanglement-assisted quantum stabilizer codes
15
作者 Wang Yun-Jiang Bai Bao-Ming +2 位作者 Li Zhuo Peng Jin-Ye Xiao He-Ling 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期88-93,共6页
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ... We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. 展开更多
关键词 quantum error correction entanglement-assisted quantum stabilizer codes encodingcomplexity
下载PDF
Testing a quantum error-correcting code on various platforms 被引量:1
16
作者 Qihao Guo Yuan-Yuan Zhao +5 位作者 Markus Grassl Xinfang Nie Guo-Yong Xiang Tao Xing Zhang-Qi Yin Bei Zeng 《Science Bulletin》 SCIE EI CSCD 2021年第1期29-35,M0003,共8页
Quantum error correction plays an important role in fault-tolerant quantum information processing.It is usually difficult to experimentally realize quantum error correction,as it requires multiple qubits and quantum g... Quantum error correction plays an important role in fault-tolerant quantum information processing.It is usually difficult to experimentally realize quantum error correction,as it requires multiple qubits and quantum gates with high fidelity.Here we propose a simple quantum error-correcting code for the detected amplitude damping channel.The code requires only two qubits.We implement the encoding,the channel,and the recovery on an optical platform,the IBM Q System,and a nuclear magnetic resonance system.For all of these systems,the error correction advantage appears when the damping rate exceeds some threshold.We compare the features of these quantum information processing systems used and demonstrate the advantage of quantum error correction on current quantum computing platforms. 展开更多
关键词 quantum error correction quantum computation Superconducting circuit NMR system Optical platform
原文传递
THE CONSTRUCTION METHOD OF STABILIZER CODES FOR CONTINUOUS VARIABLES
17
作者 Lin Liping Huang Chunhui 《Journal of Electronics(China)》 2011年第3期370-374,共5页
The paper analyzes the basic principles of stabilizer codes, focusing on how to construct stabilizer codes for achieving the continuous-variable quantum error correction. Stabilizer codes can be used in the reconcilia... The paper analyzes the basic principles of stabilizer codes, focusing on how to construct stabilizer codes for achieving the continuous-variable quantum error correction. Stabilizer codes can be used in the reconciliation of continuous-variable quantum key distribution system. The construction method of stabilizer codes is very important and it can be turned into finding the check matrix for stabilizer codes. In this paper, a new algorithm called region elimination algorithm for finding the check matrix of stabilizer codes was presented which can seek the voluntary check matrix for continu-ous-variable stabilizer codes within 8 bit code length quickly and effectively, and it was simulated by Visual C++. The algorithm is mainly realized by initializing search region, reducing the search region and then keeping searching till finding all the commuting generators. The finding of check matrix of stabilizer codes lays important foundations for the further development of stabilizer codes in the con-tinuous-variable quantum key distribution. 展开更多
关键词 Continuous variable Stabilizer codes quantum error correction quantum cryptography
下载PDF
Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements
18
作者 YuXiao Jiang PengLiang Guo +4 位作者 ChengYan Gao HaiBo Wang Faris Alzahrani Aatef Hobiny FuGuo Deng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第12期12-18,共7页
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple li... We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom. 展开更多
关键词 photon transmission error correction collective-noise channel spatial-polarization modes quantum communication
原文传递
Characterizing noise correlation and enhancing coherence via qubit motion 被引量:1
19
作者 Jiaxiu Han Zhiyuan Li +11 位作者 Jingning Zhang Huikai Xu Kehuan Linghu Yongchao Li Chengyao Li Mo Chen Zhen Yang Junhua Wang Teng Ma Guangming Xue Yirong Jin Haifeng Yu 《Fundamental Research》 CAS 2021年第1期10-15,共6页
The identification of spacial noise correlation is of critical importance in developing error-corrected quantum devices,but it has barely been studied so far.In this work,we utilize an effective method called qubit mo... The identification of spacial noise correlation is of critical importance in developing error-corrected quantum devices,but it has barely been studied so far.In this work,we utilize an effective method called qubit motion,to efficiently determine the noise correlations between any pair of qubits in a 7-qubit superconducting quantum system.The noise correlations between the same pairs of qubits are also investigated when the qubits are at distinct operating frequencies.What’s more,in this multi-qubit system with the presence of noise correlations,we demonstrate the enhancing effect of qubit motion on the coherence of logic qubits,and we propose a Motion-CPMG operation sequence to more efficiently protect the logic state from decoherence,which is experimentally demonstrated to extend the coherence time of logic qubits by nearly one order of magnitude. 展开更多
关键词 Qubit motion Noise correlation DECOHERENCE CPMG quantum error correction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部