In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric ...In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.展开更多
基金Supported by the Scientific Research Foundation of Hubei Provincial Education Department of China(Q20174503)the National Science Foundation of Hubei Polytechnic University of China(12xjz14A and 17xjz03A)。
文摘In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.