This paper studies the effect of a charged impurity together with or without an external homogeneous electric field on a quantum ring threaded by a magnetic field B and containing two electrons. The potential caused b...This paper studies the effect of a charged impurity together with or without an external homogeneous electric field on a quantum ring threaded by a magnetic field B and containing two electrons. The potential caused by the impurity has been plotted which is helpful to the understanding of the electronic structures inside the ring. The deep valley appearing in the potential curve is the source of localization, which affects seriously the Aharonov-Bohm oscillation (ABO) of the energy and persistent current. It also causes the fluctuation of the total orbital angular momentum L of the pair of electrons. It is found that the appearance of the impurity reduces the domain of the fractional ABO. During the increase of B, the domain of the integral ABO may appear earlier when B is even quite small. The transition from the localized states to extended states has also been studied. Furthermore, it has deduced a set of related formulae for a transformation, by which an impurity with a charge ep placed at an arbitrary point Rp is equivalent to an impurity with a revised charge ep placed at the X-axis with a revised radial distance Rp. This transformation facilitates the calculation and make the analysis of the physical result clearer.展开更多
The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the Aha...The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the AharonovBohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring. However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring. Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign. This change is associated with a singlet-triplet transition and has no counterpart in one-electron rings. For a given E, there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E=0.展开更多
In this paper, we calculate the low-lying spectra of a single-electron magnetic quantum ring with an offcenter Coulomb impurity, where the magnetic field is zero within the ring and constant elsewhere. The impurity, e...In this paper, we calculate the low-lying spectra of a single-electron magnetic quantum ring with an offcenter Coulomb impurity, where the magnetic field is zero within the ring and constant elsewhere. The impurity, either an acceptor or a donor, is located at a distance d as measured from the plane of the ring along the vertical z direction. The magnetic moments are found in order to get visible discontinuities at the points of the ground-state orbital angular momentum L transitions induced by magnetic fields.展开更多
The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are take...The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.展开更多
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, thei...Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.展开更多
Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show th...Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.展开更多
Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. ...Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.展开更多
The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the s...The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.展开更多
In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. Acc...In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. According to the simulation results, the availability of the QR with tunable size and the formation of smooth shape on the ideal flat substrate are checked. Through designing the substrate engineering, i.e., changing the depth, the separation and the ratio between the radius and the height of the embedded inclusions, the position and size of QR can be controlled and eventually the growth strategy of optimizing the self-assembly QRs is accomplished.展开更多
The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electr...The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electron quantum ring from ground state to excited states with a number of parameters is shown and explained.The energy levels and wavefunctions of the system in the presence of static electric field are found by solving the time-independent Schrodinger equation numerically by the finite difference method.The shape of the pulse plays a dominant role on the dynamics.展开更多
This paper presents a finite element calculation for the electronic structure and strain distribution of self-organized InAs/GaAs quantum rings. The strain distribution calculations are based on the continuum elastic ...This paper presents a finite element calculation for the electronic structure and strain distribution of self-organized InAs/GaAs quantum rings. The strain distribution calculations are based on the continuum elastic theory. An ideal three-dimensional circular quantum ring model is adopted in this work. The electron and heavy-hole energy levels of the InAs/GaAs quantum rings are calculated by solving the three-dimensional effective mass SchrSdinger equation including the deformation potential and piezoelectric potential up to the second order induced by the strain. The calculated results show the importance of strain and piezoelectric effects, and these effects should be taken into consideration in analysis of the optoelectronic characteristics of strain quantum rings.展开更多
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by t...We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.展开更多
In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy...In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels axe sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R1 and TSQR's inner radius R2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.展开更多
We study a quantum ring (QR) with four electrons in a perpendicular external magnetic field B by exact diagonalization. The low-lying spectra of the QR as a function orb are obtained. A phase diagram is presented in...We study a quantum ring (QR) with four electrons in a perpendicular external magnetic field B by exact diagonalization. The low-lying spectra of the QR as a function orb are obtained. A phase diagram is presented indicating that the angular momentum and the spin of the ground state of the QR may jump when B and/or the radius of the QR vary, and a corresponding analysis is performed. By plotting the density functions of the QR, the ground-state configuration is found to be a regular quadrangle. Furthermore, the features of the ground-state persistent current are revealed.展开更多
We propose a theoretical method to investigate the effect of the Dresselhaus spin–orbit coupling(DSOC) on the spin transport properties of a regular polygonal quantum ring with an arbitrary number of segments. We f...We propose a theoretical method to investigate the effect of the Dresselhaus spin–orbit coupling(DSOC) on the spin transport properties of a regular polygonal quantum ring with an arbitrary number of segments. We find that the DSOC can break the time reversal symmetry of the spin conductance in a polygonal ring and that this property can be used to reverse the spin direction of electrons in the polygon with the result that a pure spin up or pure spin down conductance can be obtained by exchanging the source and the drain. When the DSOC is considered in a polygonal ring with Rashba spin–orbit coupling(RSOC) with symmetric attachment of the leads, the total conductance is independent of the number of segments when both of the two types of spin–orbit coupling(SOC) have the same value. However, the interaction of the two types of SOC results in an anisotropic and shape-dependent conductance in a polygonal ring with asymmetric attachment of the leads. The method we proposed to solve for the spin conductance of a polygon can be generalized to the circular model.展开更多
A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fr...A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fractional Aharonov-Bohm oscillation. It was found that the reduction of size will lead to a very strong oscillation in the ground state energy and in the persistent current. The electronic correlation has also been demonstrated by showing the nodal structures of wave functions.展开更多
The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of ex...The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The feature of binding energy of the ground state as a function of the ring radius for several values of the magnetic field has been revealed. The interesting feature of our study is that, in a quantum ring, the geometric structure of exeitons may reveal transition.展开更多
The effect of resonant cavity structure on the performance operation of In As/Ga As quantum ring intersubband photodetector is studied for detection of terahertz radiations range.In order to confinement of optical fie...The effect of resonant cavity structure on the performance operation of In As/Ga As quantum ring intersubband photodetector is studied for detection of terahertz radiations range.In order to confinement of optical field w ithin active region and consequently enhancement in responsivity of device,tw o periods of Al2O3/Ga As distributed bragg reflectors are used as bottom dielectric mirror and a thin layer of Au material as top mirror of device.For further improvement in detectivity,Al0.3Ga0.7As/In0.3Ga0.7As resonant tunneling barriers are included in absorption layers to reduce dark current of device.Proposed photodetector show s a peak responsivity of about 0.4(A/W)and quantum efficiency of 1.2%at the w avelength of 80μm(3.75 THz).Furthermore,specific detectivity(D*)of device is calculated and results are compared to conventional quantum ring inter-subband photodetector.Results predict a D*of^1011(cm.Hz1/2/W)for device at T=80 K and V=0.4 V w hich is tw o orders of magnitude higher than that of conventional QRIPs.展开更多
We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/GaAs quantum rings (QRs) under resonant excitation condition. We have studied the rise in temperature of th...We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/GaAs quantum rings (QRs) under resonant excitation condition. We have studied the rise in temperature of the ground-state intensity. The carrier transfer between the ground state of the small ring family towards the big-ring family of the bimodal size distribution is identified by analyzing the photoluminescence spectra. This effect is observed in very thin spacer and under resonant excitation. This situation makes important the lateral tunneling of excitons between rings under low temperatures (10 K). Tunneling time about 1ns was estimated at low temperature and compared to similar carrier transfer in quantum dots (QDs) found in the literature.展开更多
Carrier tunnelling through GaAs barriers of different thicknesses is investigated in vertically InGaAs/GaAs quantum rings (QR’s). Shorter PL decay time of the ground state emission of high-energy component in the sam...Carrier tunnelling through GaAs barriers of different thicknesses is investigated in vertically InGaAs/GaAs quantum rings (QR’s). Shorter PL decay time of the ground state emission of high-energy component in the sample with thicker spacer (1.5 nm) is ascribed to both tunnelling effect between the two QR families and vertical coupling between layers in the stacks. We found that tunnelling time between QR’s followed the Wentzel-Kramers-Brillouin (WKB) approximation. The non resonant tunnelling rate between QR’s is found to be different by one order of magnitude from the rate in quantum dots (QD’s).展开更多
基金Project supported by the Natural Science Foundation of Fujian Province of China (Grant No T0650010).
文摘This paper studies the effect of a charged impurity together with or without an external homogeneous electric field on a quantum ring threaded by a magnetic field B and containing two electrons. The potential caused by the impurity has been plotted which is helpful to the understanding of the electronic structures inside the ring. The deep valley appearing in the potential curve is the source of localization, which affects seriously the Aharonov-Bohm oscillation (ABO) of the energy and persistent current. It also causes the fluctuation of the total orbital angular momentum L of the pair of electrons. It is found that the appearance of the impurity reduces the domain of the fractional ABO. During the increase of B, the domain of the integral ABO may appear earlier when B is even quite small. The transition from the localized states to extended states has also been studied. Furthermore, it has deduced a set of related formulae for a transformation, by which an impurity with a charge ep placed at an arbitrary point Rp is equivalent to an impurity with a revised charge ep placed at the X-axis with a revised radial distance Rp. This transformation facilitates the calculation and make the analysis of the physical result clearer.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574163), the Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Collisions, Lanzhou, China.
文摘The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the AharonovBohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring. However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring. Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign. This change is associated with a singlet-triplet transition and has no counterpart in one-electron rings. For a given E, there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E=0.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 50371058 and 90103028
文摘In this paper, we calculate the low-lying spectra of a single-electron magnetic quantum ring with an offcenter Coulomb impurity, where the magnetic field is zero within the ring and constant elsewhere. The impurity, either an acceptor or a donor, is located at a distance d as measured from the plane of the ring along the vertical z direction. The magnetic moments are found in order to get visible discontinuities at the points of the ground-state orbital angular momentum L transitions induced by magnetic fields.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411)
文摘The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
基金Project supported by the National Basic Research Program of China (Grant No 2003CB314901)the National Natural Science Foundation of China (Grant No 60644004)the High School Innovation and Introducing Talent Project of China (B07005)
文摘Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176089)Hebei Provincial Natural Science Foundation,China(Grant No.A2011205092)
文摘Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 11504083)the Foundation of Shijiazhuang University,China(Grant No.XJPT002)
文摘Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science,and Technology,Korea (Grant No.2010-0024703)
文摘The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Program for New Century Excellent Talentsin University, China (Grant No. NTCE-10-0261)the Chinese Universities Science Fund (Grant No. 2011RC0402)
文摘In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. According to the simulation results, the availability of the QR with tunable size and the formation of smooth shape on the ideal flat substrate are checked. Through designing the substrate engineering, i.e., changing the depth, the separation and the ratio between the radius and the height of the embedded inclusions, the position and size of QR can be controlled and eventually the growth strategy of optimizing the self-assembly QRs is accomplished.
基金the University of Delhi for providing funds under the 'Scheme to Strengthen Research and Development'
文摘The response of a two-electron quantum ring system to the short laser pulses of different shapes in the presence of external static electric field is studied.The variation of transition probabilities of the two-electron quantum ring from ground state to excited states with a number of parameters is shown and explained.The energy levels and wavefunctions of the system in the presence of static electric field are found by solving the time-independent Schrodinger equation numerically by the finite difference method.The shape of the pulse plays a dominant role on the dynamics.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos 60908028 and 60971068)the High School Innovation and Introducing Talent Project of China (Grant No B07005)
文摘This paper presents a finite element calculation for the electronic structure and strain distribution of self-organized InAs/GaAs quantum rings. The strain distribution calculations are based on the continuum elastic theory. An ideal three-dimensional circular quantum ring model is adopted in this work. The electron and heavy-hole energy levels of the InAs/GaAs quantum rings are calculated by solving the three-dimensional effective mass SchrSdinger equation including the deformation potential and piezoelectric potential up to the second order induced by the strain. The calculated results show the importance of strain and piezoelectric effects, and these effects should be taken into consideration in analysis of the optoelectronic characteristics of strain quantum rings.
基金Project supported by the National Natural Science Foundation of China(Grant No.10704011)the Education Department of Liaoning Province,China(Grant No.2009A031)
文摘We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No 60521001)
文摘In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels axe sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R1 and TSQR's inner radius R2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10874112, 10847267, and 10947101the Natural Scineee Foundation of Guangdong Province under Grant Nos.7007806, 06300345, and 8451027501001445
文摘We study a quantum ring (QR) with four electrons in a perpendicular external magnetic field B by exact diagonalization. The low-lying spectra of the QR as a function orb are obtained. A phase diagram is presented indicating that the angular momentum and the spin of the ground state of the QR may jump when B and/or the radius of the QR vary, and a corresponding analysis is performed. By plotting the density functions of the QR, the ground-state configuration is found to be a regular quadrangle. Furthermore, the features of the ground-state persistent current are revealed.
基金supported by the National Natural Science Foundation of China(Grant No.61176089)the Natural Science Foundation of Hebei Province,China(Grant No.A2011205092)the Foundation of Shijiazhuang University,China(Grant No.XJPT002)
文摘We propose a theoretical method to investigate the effect of the Dresselhaus spin–orbit coupling(DSOC) on the spin transport properties of a regular polygonal quantum ring with an arbitrary number of segments. We find that the DSOC can break the time reversal symmetry of the spin conductance in a polygonal ring and that this property can be used to reverse the spin direction of electrons in the polygon with the result that a pure spin up or pure spin down conductance can be obtained by exchanging the source and the drain. When the DSOC is considered in a polygonal ring with Rashba spin–orbit coupling(RSOC) with symmetric attachment of the leads, the total conductance is independent of the number of segments when both of the two types of spin–orbit coupling(SOC) have the same value. However, the interaction of the two types of SOC results in an anisotropic and shape-dependent conductance in a polygonal ring with asymmetric attachment of the leads. The method we proposed to solve for the spin conductance of a polygon can be generalized to the circular model.
基金The project supported by the National Natural Science Foundation of China under Grant Nos. 10574163 and 90306016.Acknowledgments The author wishes to thank Prof. C.G. Bao and Mr. G.M. Huang for their helpful discussions.
文摘A model is proposed to study the quantum rings with two deeply bound electrons under a variable magnetic field. The emphasis is placed to clarify the effect of the size (diameter) and the width of the ring on the fractional Aharonov-Bohm oscillation. It was found that the reduction of size will lead to a very strong oscillation in the ground state energy and in the persistent current. The electronic correlation has also been demonstrated by showing the nodal structures of wave functions.
基金supported by National Natural Science Foundation of China under Grant No.10775035
文摘The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The feature of binding energy of the ground state as a function of the ring radius for several values of the magnetic field has been revealed. The interesting feature of our study is that, in a quantum ring, the geometric structure of exeitons may reveal transition.
文摘The effect of resonant cavity structure on the performance operation of In As/Ga As quantum ring intersubband photodetector is studied for detection of terahertz radiations range.In order to confinement of optical field w ithin active region and consequently enhancement in responsivity of device,tw o periods of Al2O3/Ga As distributed bragg reflectors are used as bottom dielectric mirror and a thin layer of Au material as top mirror of device.For further improvement in detectivity,Al0.3Ga0.7As/In0.3Ga0.7As resonant tunneling barriers are included in absorption layers to reduce dark current of device.Proposed photodetector show s a peak responsivity of about 0.4(A/W)and quantum efficiency of 1.2%at the w avelength of 80μm(3.75 THz).Furthermore,specific detectivity(D*)of device is calculated and results are compared to conventional quantum ring inter-subband photodetector.Results predict a D*of^1011(cm.Hz1/2/W)for device at T=80 K and V=0.4 V w hich is tw o orders of magnitude higher than that of conventional QRIPs.
文摘We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/GaAs quantum rings (QRs) under resonant excitation condition. We have studied the rise in temperature of the ground-state intensity. The carrier transfer between the ground state of the small ring family towards the big-ring family of the bimodal size distribution is identified by analyzing the photoluminescence spectra. This effect is observed in very thin spacer and under resonant excitation. This situation makes important the lateral tunneling of excitons between rings under low temperatures (10 K). Tunneling time about 1ns was estimated at low temperature and compared to similar carrier transfer in quantum dots (QDs) found in the literature.
文摘Carrier tunnelling through GaAs barriers of different thicknesses is investigated in vertically InGaAs/GaAs quantum rings (QR’s). Shorter PL decay time of the ground state emission of high-energy component in the sample with thicker spacer (1.5 nm) is ascribed to both tunnelling effect between the two QR families and vertical coupling between layers in the stacks. We found that tunnelling time between QR’s followed the Wentzel-Kramers-Brillouin (WKB) approximation. The non resonant tunnelling rate between QR’s is found to be different by one order of magnitude from the rate in quantum dots (QD’s).