Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with recons...Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.展开更多
Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantu...Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements.We demonstrate that convolutional neural network(CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states(or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.展开更多
An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the at...An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.展开更多
In this paper, we present a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states in terms of the multiple-rail and polarization representation of a single photon. In our sche...In this paper, we present a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states in terms of the multiple-rail and polarization representation of a single photon. In our scheme, discriminated quantum states are expressed by using the spatial degree of freedom of a single photon while the polarization degree of freedom of the single photon is used to act as an auxiliary qubit. The optical components used in our scheme are only passive linear optical elements such as polarizing beam splitters, wave plates, polarizers, single photon detectors, and single photon source.展开更多
We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distrib...We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite...In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.展开更多
We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under th...We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under the zero and periodic boundary conditions, we show how to determine n exact stationary eigenstates {Rn} corresponding to different chemical potentials {μn} from the known solutions of the system. The n-th eigenstate P~ is the Jacobian elliptic function with period 2din for n = 1,2,…, and with zero points containing the potential barrier positions. So Rn is differentiable at any spatial point and R2 describes n complete wave-packets in each period of the KPP. It is revealed that one can use a laser pulse modeled by a 5 potential at site xi to manipulate the transitions from the states of {Rn} with zero Point x≠xi to the states of {Rn'} with zero Point x= Xi. The results suggest an experimental scheme for applying BEC to test the BVP and to observe the macroscopic quantum transitions.展开更多
Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuc...Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11〉 with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect.展开更多
Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer q...Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.展开更多
In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-...In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-free frequency conversion of a quantum state can be achieved by injecting a strong signal field. The dependences of conversion efficiency on the pump parameter, extra losses and input state amplitude are also analysed.展开更多
We construct efficient quantum logic network for probabilistic cloning the quantum states used in imple mented tasks for which cloning provides some enhancement in performance.
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc...In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.展开更多
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tom...In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained extensive attention.Recently,some direct measurement schemes based on weak values have been proposed,but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment.Meanwhile,the post-selection process in the scheme will reduce the utilization of resources.In order to avoid these disadvantages,a direct measurement scheme without auxiliary states is proposed in this paper.In this scheme,we achieve the direct measurement of quantum states by using quantum circuits,then we extend it to the measurement of general multi-particle states and complete the error analysis.Finally,when we take into account the dephasing of the quantum states,we modify the circuits and the modified circuits still work for the dephasing case.展开更多
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of ...A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.展开更多
The phenomenal progress of quantum information theory over the last decade has substantially broadened the potential to simulate the superposition of states for exponential speedup of quantum algorithms over their cla...The phenomenal progress of quantum information theory over the last decade has substantially broadened the potential to simulate the superposition of states for exponential speedup of quantum algorithms over their classical peers.Therefore,the conventional and modern cryptographic standards(encryption and authentication)are susceptible to Shor’s and Grover’s algorithms on quantum computers.The significant improvement in technology permits consummate levels of data protection by encoding classical data into small quantum states that can only be utilized once by leveraging the capabilities of quantum-assisted classical computations.Considering the frequent data breaches and increasingly stringent privacy legislation,we introduce a hybrid quantum-classical model to transform classical data into unclonable states,and we experimentally demonstrate perfect state transfer to exemplify the classical data.To alleviate implementation complexity,we propose an arbitrary quantum signature scheme that does not require the establishment of entangled states to authenticate users in order to transmit and receive arbitrated states to retrieve classical data.The consequences of the probabilistic model indicate that the quantum-assisted classical framework substantially enhances the performance and security of digital data,and paves the way toward real-world applications.展开更多
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr...The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.展开更多
Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states■an...Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states■and■through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.展开更多
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know...We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant No. 11974178)。
文摘Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12004266, 11834014 and 11975050)the Beijing Natural Science Foundation (Grant Nos. 1192005 and Z180013)+1 种基金the Foundation of Beijing Education Committees (Grant No.KM202010028013)the Academy for Multidisciplinary Studies,Capital Normal University。
文摘Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements.We demonstrate that convolutional neural network(CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states(or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10225421 and 10674025
文摘An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.
基金Project supported by the National Fundamental Research Program (Grant No 2001CB309310), the National Natural Science Foundation of China (Grant Nos 90203018 and 10325523), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No 04C385), the Natural Science Foundation of Hunan Province of China (Grant No 05JJ30012) and the Science Foundation of Hunan Normal University of China.
文摘In this paper, we present a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states in terms of the multiple-rail and polarization representation of a single photon. In our scheme, discriminated quantum states are expressed by using the spatial degree of freedom of a single photon while the polarization degree of freedom of the single photon is used to act as an auxiliary qubit. The optical components used in our scheme are only passive linear optical elements such as polarizing beam splitters, wave plates, polarizers, single photon detectors, and single photon source.
基金supported by the National Natural Science Foundation of China(Grant Nos.61801280,61805134,and 61822114)the Applied Fundamental Research Projects of Shanxi Province,China(Grant No.201801D221015)Science and Technology Innovation Project of Shanxi Normal University(Grant No.2020XSY032)。
文摘We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575017 and 60472017
文摘In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.
基金The project supported by the National Natural Science Foundation of China under Grant Nos.10575034 and 10875039
文摘We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under the zero and periodic boundary conditions, we show how to determine n exact stationary eigenstates {Rn} corresponding to different chemical potentials {μn} from the known solutions of the system. The n-th eigenstate P~ is the Jacobian elliptic function with period 2din for n = 1,2,…, and with zero points containing the potential barrier positions. So Rn is differentiable at any spatial point and R2 describes n complete wave-packets in each period of the KPP. It is revealed that one can use a laser pulse modeled by a 5 potential at site xi to manipulate the transitions from the states of {Rn} with zero Point x≠xi to the states of {Rn'} with zero Point x= Xi. The results suggest an experimental scheme for applying BEC to test the BVP and to observe the macroscopic quantum transitions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103, 10574143 and 10874206)the National Key Basic Research Program of China (Grant No 2006CB921203)
文摘Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11〉 with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect.
基金National Natural Science Foundation of China under Grant No.10575017
文摘Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.
基金supported by the National Natural Science Foundation of China (Grant No. 10974126)the National Basic Research Program of China (Grant No. 2010CB923102)
文摘In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed. The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-free frequency conversion of a quantum state can be achieved by injecting a strong signal field. The dependences of conversion efficiency on the pump parameter, extra losses and input state amplitude are also analysed.
文摘We construct efficient quantum logic network for probabilistic cloning the quantum states used in imple mented tasks for which cloning provides some enhancement in performance.
基金supported by the National Natural Science Foundation of China(Grant No.12301590)the Natural Science Foundation of Hebei Province(Grant No.A2022210002)。
文摘In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
基金supported by National Natural Science Foundation of China(62075049)and(61701139)
文摘In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained extensive attention.Recently,some direct measurement schemes based on weak values have been proposed,but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment.Meanwhile,the post-selection process in the scheme will reduce the utilization of resources.In order to avoid these disadvantages,a direct measurement scheme without auxiliary states is proposed in this paper.In this scheme,we achieve the direct measurement of quantum states by using quantum circuits,then we extend it to the measurement of general multi-particle states and complete the error analysis.Finally,when we take into account the dephasing of the quantum states,we modify the circuits and the modified circuits still work for the dephasing case.
基金Project supported by the National Natural Science Foundation of China (Grant No.11704051)the Qinglan Project of the Jiangsu Education Department and the Research Foundation of Six Talents Peaks Project in Jiangsu Province,China (Grant No.XNY-093)。
文摘A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.
基金supported in part by the National Research Foundation of Korea Grant funded by the Korea Government[Ministry of Science and ICT(MSIT)]under Grant No.2020R1A2B5B01002145in part by the Gachon University Research Fund under Grant No.GCU-202106360001.
文摘The phenomenal progress of quantum information theory over the last decade has substantially broadened the potential to simulate the superposition of states for exponential speedup of quantum algorithms over their classical peers.Therefore,the conventional and modern cryptographic standards(encryption and authentication)are susceptible to Shor’s and Grover’s algorithms on quantum computers.The significant improvement in technology permits consummate levels of data protection by encoding classical data into small quantum states that can only be utilized once by leveraging the capabilities of quantum-assisted classical computations.Considering the frequent data breaches and increasingly stringent privacy legislation,we introduce a hybrid quantum-classical model to transform classical data into unclonable states,and we experimentally demonstrate perfect state transfer to exemplify the classical data.To alleviate implementation complexity,we propose an arbitrary quantum signature scheme that does not require the establishment of entangled states to authenticate users in order to transmit and receive arbitrated states to retrieve classical data.The consequences of the probabilistic model indicate that the quantum-assisted classical framework substantially enhances the performance and security of digital data,and paves the way toward real-world applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074368,92165207,12034018,and 62004185)the Anhui Province Natural Science Foundation (Grant No.2108085J03)the USTC Tang Scholarship。
文摘The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.
基金supported by the Fundamental Research Funds for the Central Universities(WK2470000035)USTC Research Funds of the Double First-Class Initiative(YD2030002007,YD2030002011)+1 种基金the National Natural Science Foundation of China(62222512,12104439,12134014,and 11974335)the Anhui Provincial Natural Science Foundation(2208085J03).
文摘Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states■and■through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.
基金Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India
文摘We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.