We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of ...We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of local fields,the distance between them,and their potential height on the created particle number.It is found that whether adjacent electric fields overlap plays an important role.The creation rate exhibits a direct linear relationship with the number of fields when they do not overlap,but exceeds the sum of the rate when the fields alone.They exhibit a distinctly nonlinear relationship when they overlap,and in particular exhibit a quadratic relationship when the fields completely overlap.These phenomena corroborate that the particle pair creation in the interaction region is non-uniform and influenced by the strength of the central strongest electric field.展开更多
Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons cr...Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons created under combined potential wells can be increased by two or three times.In the low frequency region,frequency modulation excites interference effect and multiphoton processes,which promotes the generation of electron–positron pairs.In the high frequency region,high frequency suppression inhibits the generation of electron–positron pairs.In addition,for a single potential well,the number of created electron–positron pairs can be enhanced by several orders of magnitude in the low frequency region.展开更多
The combination of an oscillating and a static field is used to study the creation and annihilation phenomena during the pair creation process.The time evolution,spatial density and momentum distribution of the create...The combination of an oscillating and a static field is used to study the creation and annihilation phenomena during the pair creation process.The time evolution,spatial density and momentum distribution of the created particles for a fermionic system are presented,which demonstrate that with the increasing static field intensity,the number of the created particles experiences a distinguishable decrease in every period of the oscillating field,which is caused by the annihilation phenomena between the created electrons and positrons.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11974419,11605286,and 12204001)the National Key R&D Program of China(Grant No.2018YFA0404802)。
文摘We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of local fields,the distance between them,and their potential height on the created particle number.It is found that whether adjacent electric fields overlap plays an important role.The creation rate exhibits a direct linear relationship with the number of fields when they do not overlap,but exceeds the sum of the rate when the fields alone.They exhibit a distinctly nonlinear relationship when they overlap,and in particular exhibit a quadratic relationship when the fields completely overlap.These phenomena corroborate that the particle pair creation in the interaction region is non-uniform and influenced by the strength of the central strongest electric field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11635003,11025524,11161130520,11875007,and 12047513)the Reform and Development Project of Beijing Academy of Science and Technology (Grant Nos.13001-2110 and 13001-2114)。
文摘Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons created under combined potential wells can be increased by two or three times.In the low frequency region,frequency modulation excites interference effect and multiphoton processes,which promotes the generation of electron–positron pairs.In the high frequency region,high frequency suppression inhibits the generation of electron–positron pairs.In addition,for a single potential well,the number of created electron–positron pairs can be enhanced by several orders of magnitude in the low frequency region.
基金the National Natural Science Foundation of China(Grant Nos.11974419 and 11605286)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25051000)the National Key R&D Program of China(Grant No.2018YFA0404802)。
文摘The combination of an oscillating and a static field is used to study the creation and annihilation phenomena during the pair creation process.The time evolution,spatial density and momentum distribution of the created particles for a fermionic system are presented,which demonstrate that with the increasing static field intensity,the number of the created particles experiences a distinguishable decrease in every period of the oscillating field,which is caused by the annihilation phenomena between the created electrons and positrons.