期刊文献+
共找到9,378篇文章
< 1 2 250 >
每页显示 20 50 100
Reanalysis of energy band structure in the type-II quantum wells
1
作者 李欣欣 邓震 +4 位作者 江洋 杜春花 贾海强 王文新 陈弘 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期75-78,共4页
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures... Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems. 展开更多
关键词 energy band structure type-II quantum wells low-dimensional semiconductors
下载PDF
Physico−mathematical model of the voltage−current characteristics of light-emitting diodes with quantum wells based on the Sah−Noyce−Shockley recombination mechanism
2
作者 Fedor I.Manyakhin Dmitry O.Varlamov +3 位作者 Vladimir P.Krylov Lyudmila O.Morketsova Arkady A.Skvortsov Vladimir K.Nikolaev 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期25-33,共9页
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco... Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4. 展开更多
关键词 light-emitting diodes with quantum wells voltage−current relation nonideality factor recombination mechanism Sah−Noyce−Shockley model
下载PDF
Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells 被引量:1
3
作者 马淑芳 李磊 +8 位作者 孔庆波 徐阳 刘青明 张帅 张西数 韩斌 仇伯仓 许并社 郝晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期544-548,共5页
The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected sc... The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected scanning transmission electron microscopy(Cs-STEM)techniques.To facility our study,we grow two multiple quantum wells(MQWs)samples,which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs(sample A).Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface,and the effect of the Ga As insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale.Therefore,the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity,interface roughness,and further an enhanced optical performance of InGaAs/AlGaAs QWs. 展开更多
关键词 InGaAs/AlGaAs quantum well GaAs insertion layer In segregation scanning transmission electron microscopy
下载PDF
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure 被引量:2
4
作者 Zengyi Xu Wenqing Niu +12 位作者 Yu Liu Xianhao Lin Jifan Cai Jianyang Shi Xiaolan Wang Guangxu Wang Jianli Zhang Fengyi Jiang Zhixue He Shaohua Yu Chao Shen Junwen Zhang Nan Chi 《Opto-Electronic Science》 2023年第5期12-24,共13页
Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher fr... Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format. 展开更多
关键词 GaN-based LED LED array VLC V-pit sidewall quantum well high-frequency response
下载PDF
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications 被引量:2
5
作者 Fanlu Zhang Zhicheng Su +10 位作者 Zhe Li Yi Zhu Nikita Gagrani Ziyuan Li Mark Lockrey Li Li Igor Aharonovich Yuerui Lu Hark Hoe Tan Chennupati Jagadish Lan Fu 《Opto-Electronic Science》 2023年第5期1-11,共11页
Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP si... Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well(QW)nanowire array light emitting diodes(LEDs)with multi-wavelength and high-speed operations.Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of~1.35 and~1.55μm,respectively,ideal for low-loss optical communications.As a result of simultaneous contributions from both axial and radial QWs,broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of~17μW.A large spectral blueshift is observed with the increase of applied bias,which is ascribed to the band-filling effect based on device simulation,and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range.Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate,leading to QW formation with different emission wavelengths.Furthermore,high-speed GHz-level modulation and small pixel size LED are demonstrated,showing the promise for ultrafast operation and ultracompact integration.The voltage and pitch size controlled multi-wavelength highspeed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications. 展开更多
关键词 INGAAS/INP quantum well NANOWIRES LEDS
下载PDF
Study of quantum well mixing induced by impurity-free vacancy in the primary epitaxial wafers of a 915 nm semiconductor laser
6
作者 Tianjiang He Suping Liu +5 位作者 Wei Li Li Zhong Xiaoyu Ma Cong Xiong Nan Lin Zhennuo Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期70-76,共7页
Output power and reliability are the most important characteristic parameters of semiconductor lasers.However,catas-trophic optical damage(COD),which usually occurs on the cavity surface,will seriously damage the furt... Output power and reliability are the most important characteristic parameters of semiconductor lasers.However,catas-trophic optical damage(COD),which usually occurs on the cavity surface,will seriously damage the further improvement of the output power and affect the reliability.To improve the anti-optical disaster ability of the cavity surface,a non-absorption window(NAW)is adopted for the 915 nm InGaAsP/GaAsP single-quantum well semiconductor laser using quantum well mix-ing(QWI)induced by impurity-free vacancy.Both the principle and the process of point defect diffusion are described in detail in this paper.We also studied the effects of annealing temperature,annealing time,and the thickness of SiO_(2) film on the quan-tum well mixing in a semiconductor laser with a primary epitaxial structure,which is distinct from the previous structures.We found that when compared with the complete epitaxial structure,the blue shift of the semiconductor laser with the primary epi-taxial structure is larger under the same conditions.To obtain the appropriate blue shift window,the primary epitaxial struc-ture can use a lower annealing temperature and shorter annealing time.In addition,the process is less expensive.We also pro-vide references for upcoming device fabrication. 展开更多
关键词 catastrophic optical damage primary epitaxial structure impurity-free vacancy disordering quantum well intermixing non-absorption window
下载PDF
Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface
7
作者 王刚 管闪 +1 位作者 宋志刚 骆军委 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期126-133,共8页
The achievement of universal quantum computing critically relies on scalability.However,ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable... The achievement of universal quantum computing critically relies on scalability.However,ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable fluctuations in valley splitting energy(E_(VS))across quantum dot arrays,which impede the initialization of qubit systems comprising multiple spins and give rise to spin–valley entanglement resulting in the loss of spin information.These E_(VS)fluctuations have been attributed to variations in the in-plane averaged alloy concentration along the confinement direction of Si/SiGe quantum wells.In this study,employing atomistic pseudopotential calculations,we unveil a significant spectrum of E_(VS)even in the absence of such concentration fluctuations.This spectrum represents the lower limit of the wide range of E_(VS)observed in numerous Si/SiGe quantum devices.By constructing simplified interface atomic step models,we analytically demonstrate that the lower bound of the E_(VS)spread originates from the in-plane random distribution of Si and Ge atoms within SiGe barriers——an inherent characteristic that has been previously overlooked.Additionally,we propose an interface engineering approach to mitigate the in-plane randomness-induced fluctuations in E_(VS)by inserting a few monolayers of pure Ge barrier at the Si/SiGe interface.Our findings provide valuable insights into the critical role of in-plane randomness in determining E_(VS)in Si/SiGe quantum devices and offer reliable methods to enhance the feasibility of scalable Si-based spin qubits. 展开更多
关键词 quantum wells valley splitting alloy concentration fluctuation
下载PDF
Light propagation characteristics in quantum well structures of photonic crystals
8
作者 刘靖 孙军强 +2 位作者 黄重庆 陈敏 黄德修 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1833-1839,共7页
Two-dimensional (2D) closed-cavity single quantum well (SQW) and multiple quantum well (MQW) structures are proposed based on the traditional 2D open-cavity SQW structures of photonic crystals. The numerical cal... Two-dimensional (2D) closed-cavity single quantum well (SQW) and multiple quantum well (MQW) structures are proposed based on the traditional 2D open-cavity SQW structures of photonic crystals. The numerical calculation results show that the proposed structures can greatly improve the optical characteristics compared with the traditional structures. It is found that the barrier thickness has a great impact on the optical characteristics of the closed-cavity MQW structures: when the barrier thickness is narrower, each resonant peak which appears in the SQW would split, the number of split times is just equal to the number of wells, and each well in the MQW structures is a travelling-wave-well, similar to the well in the open-cavity SQW structures; when the barrier thickness is wider, there is no effect of spectral splitting, and each well in the MQW structures is a standing-wave-well, just like the well in the closed-cavity SQW. The physical origin of different field distributions and the effect of the spectral splitting are provided. 展开更多
关键词 multiple quantum well single quantum well light field distribution spectral splitting
下载PDF
A dual-blue light-emitting diode based on strain-compensated InGaN-AlGaN/GaN quantum wells
9
作者 严启荣 闫其昂 +3 位作者 石培培 牛巧利 李述体 章勇 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期357-360,共4页
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared w... A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current. 展开更多
关键词 InGaN-AlGaN/GaN quantum well InGaN/GaN quantum well spectral stability dual-blue lightemitting diode
下载PDF
Effects of electron–optical phonon interactions on the polaron energy in a wurtzite ZnO/Mg_xZn_(1-x)O quantum well 被引量:3
10
作者 赵凤岐 张敏 白金花 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期448-453,共6页
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contribution... We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail. 展开更多
关键词 wurtzite quantum well electron–optical phonon interaction polaron energy
下载PDF
Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases 被引量:4
11
作者 韩智强 宋丽颖 +1 位作者 昝宇海 班士良 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期456-463,共8页
The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<... The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures. 展开更多
关键词 quantum well mixed phase exciton transition direct and indirect exciton optical absorption
下载PDF
Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite In_xGa_(1-x)N/GaN quantum well 被引量:2
12
作者 赵凤岐 咏梅 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期396-402,共7页
The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field... The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field and different phonon modes including interface, confined and half-space phonon modes are considered in our calculation. The results for a zinc-blende quantum well are also given for comparison. It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function. As the well width increases, the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass. The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure. With the increase of external magnetic field, the cyclotron mass of polarons almost linearly increases. The cyclotron frequency of magnetopolarons is also discussed. 展开更多
关键词 wurtzite quantum well built-in electric field MAGNETOPOLARON cyclotron mass
下载PDF
On the binding energies of excitons in polar quantum well structures in a weak electric field 被引量:2
13
作者 吴云峰 梁希侠 K.K.Bajaj 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2314-2319,共6页
The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies... The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed. The results for GaAs/A1GaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected. 展开更多
关键词 quantum confined stark effects EXCITON quantum well
下载PDF
Bound polarons in quantum dot quantum well structures 被引量:2
14
作者 邢雁 王志平 王旭 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期1935-1941,共7页
The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the fram... The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the dielectric continuum approximation. The electron-phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numerical results reveal that there exist three branches of eigenfrequencies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small. 展开更多
关键词 bound polaron quantum dot quantum well
下载PDF
Influence of barrier thickness on the structural and optical properties of InGaN/GaN multiple quantum wells 被引量:2
15
作者 梁明明 翁国恩 +4 位作者 张江勇 蔡晓梅 吕雪芹 应磊莹 张保平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期328-332,共5页
The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmissio... The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmission electron mi-croscope (TEM), and temperature-dependent photoluminescence (PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodic- ity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization po- tentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence, and the corresponding activation energy (or the localization potential) increases with the increase of the barrier thickness. The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers, i.e., clusters with lower In contents aggregate into clusters with higher In contents. 展开更多
关键词 InGaN/GaN multiple quantum wells barrier thickness thermal quenching localization potential
下载PDF
Blue InGaN light-emitting diodes with dip-shaped quantum wells 被引量:3
16
作者 卢太平 李述体 +8 位作者 张康 刘超 肖国伟 周玉刚 郑树文 尹以安 忤乐娟 王海龙 杨孝东 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期491-495,共5页
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure wi... InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs). 展开更多
关键词 GaN-based light-emitting diodes dip-shaped quantum wells
下载PDF
High quality above 3-μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy 被引量:3
17
作者 邢军亮 张宇 +7 位作者 徐应强 王国伟 王娟 向伟 倪海桥 任正伟 贺振宏 牛智川 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期454-457,共4页
The GaSb-based laser shows its superiority in the 3-4 ~tm wavelength range. However, for a quantum well (QW) laser structure of InGaAsSb/AIGaInAsSb multiple-quantum well (MQW) grown on GaSb, uniform content and hi... The GaSb-based laser shows its superiority in the 3-4 ~tm wavelength range. However, for a quantum well (QW) laser structure of InGaAsSb/AIGaInAsSb multiple-quantum well (MQW) grown on GaSb, uniform content and high com- pressive strain in InGaAsSb/A1GaInAsSb are not easy to control. In this paper, the influences of the growth tempera- ture and compressive strain on the photoluminescence (PL) property of a 3.0μm lnGaAsSb/A1GaInAsSb MQW sample are analyzed to optimize the growth parameters. Comparisons among the PL spectra of the samples indicate that the Ino.485GaAso.184Sb/Alo.3Gao.45Ino.25Aso.22Sbo.78 MQW with 1.72% compressive strain grown at 460 ~C posseses the op- timum optical property. Moreover, the wavelength range of the MQW structure is extended to 3.83 μm by optimizing the parameters. 展开更多
关键词 GASB multiple-quantum well photoluminescence
下载PDF
QUANTUM MECHANICAL MODEL AND SIMULATION OF GaAs/AlGaAs QUANTUM WELL INFRARED PHOTO-DETECTOR-ⅠOPTICAL ASPECTS 被引量:2
18
作者 Fu Y Willander M +1 位作者 Li Ning Lu W 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2002年第5期321-326,共6页
A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of t... A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential <| A z |> along the QWIP growth direction ( z axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero <| A z |> ). (4) By studying the inter diffusion of the Al atoms across the GaAs?AlGaAs heterointerfaces,the mobility of the drift diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1 4), QWIP device design and optimization are possible. 展开更多
关键词 GAAS/ALGAAS PHOTODETECTOR quantum well infrared photodetector(QWIP) quantum mechanical model
下载PDF
Research on quantum well intermixing of 680 nm AlGaInP/GaInP semiconductor lasers induced by composited Si-Si_(3)N_(4) dielectric layer 被引量:2
19
作者 Tianjiang He Suping Liu +4 位作者 Wei Li Cong Xiong Nan Lin Li Zhong Xiaoyu Ma 《Journal of Semiconductors》 EI CAS CSCD 2022年第8期46-52,共7页
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the... The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication. 展开更多
关键词 high power semiconductor laser rapid thermal annealing composited dielectric layer quantum well intermixing optical catastrophic damage nonabsorbent window
下载PDF
Effects of polarization on intersubband transitions of Al_xGa_(1-x)N/GaN multi-quantum wells 被引量:1
20
作者 田武 鄢伟一 +5 位作者 熊晖 戴江南 方妍妍 吴志浩 余晨辉 陈长清 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期473-479,共7页
The effects of polarization and related structural parameters on the intersubband transitions of A1GaN/GaN multi- quantum wells (MQWs) have been investigated by solving the Schr6dinger and the Poisson equations self... The effects of polarization and related structural parameters on the intersubband transitions of A1GaN/GaN multi- quantum wells (MQWs) have been investigated by solving the Schr6dinger and the Poisson equations self-consistently. The results show that the intersubband absorption coefficient increases with increasing polarization while the transition wavelength decreases, which is not identical to the case of the interband transitions. Moreover, it suggests that the well width has a greater effect on the intersubband transitions than the barrier thickness, and the intersubband transition wavelength of the structure when doped in the barrier is shorter than that when doped in the well. It is found that the influences of the structural parameters differ for different electron subbands. The mechanisms responsible for these effects have been investigated in detail. 展开更多
关键词 intersubband transition POLARIZATION electron subband levels AIGaN/GaN quantum well
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部