We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit process...We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.展开更多
Pre-strained nanomembranes with four embedded quantum wells(QWs) are rolled up into threedimensional(3D) tubular QW infrared photodetectors(QWIPs),which are based on the QW intersubband transition(ISBT).A reds...Pre-strained nanomembranes with four embedded quantum wells(QWs) are rolled up into threedimensional(3D) tubular QW infrared photodetectors(QWIPs),which are based on the QW intersubband transition(ISBT).A redshift of ~0.42 meV in photocurrent response spectra is observed and attributed to two strain contributions due to the rolling of the pre-strained nanomembranes.One is the overall strain that mainly leads to a redshift of ~0.5 meV,and the other is the strain gradient which results in a very tiny variation.The blue shift of the photocurrent response spectra with the external bias are also observed as quantum-confined Stark effect(QCSE)in the ISBT.展开更多
A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of t...A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential <| A z |> along the QWIP growth direction ( z axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero <| A z |> ). (4) By studying the inter diffusion of the Al atoms across the GaAs?AlGaAs heterointerfaces,the mobility of the drift diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1 4), QWIP device design and optimization are possible.展开更多
Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alt...Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alternative technology like MCT(HgCdTe)was the technology choice of the 2^(nd) generation because of its high quantum efficiency.In the paper,measurements on the QWIP technology will be presented and a comparison with alternative technology will be done.展开更多
文摘We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.
基金Project supported by the Natural Science Foundation of China(Nos.51322201,61575213)the Shanghai Municipal Science and Technology Commission(No.14JC 1400200)
文摘Pre-strained nanomembranes with four embedded quantum wells(QWs) are rolled up into threedimensional(3D) tubular QW infrared photodetectors(QWIPs),which are based on the QW intersubband transition(ISBT).A redshift of ~0.42 meV in photocurrent response spectra is observed and attributed to two strain contributions due to the rolling of the pre-strained nanomembranes.One is the overall strain that mainly leads to a redshift of ~0.5 meV,and the other is the strain gradient which results in a very tiny variation.The blue shift of the photocurrent response spectra with the external bias are also observed as quantum-confined Stark effect(QCSE)in the ISBT.
文摘A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential <| A z |> along the QWIP growth direction ( z axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero <| A z |> ). (4) By studying the inter diffusion of the Al atoms across the GaAs?AlGaAs heterointerfaces,the mobility of the drift diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1 4), QWIP device design and optimization are possible.
文摘Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alternative technology like MCT(HgCdTe)was the technology choice of the 2^(nd) generation because of its high quantum efficiency.In the paper,measurements on the QWIP technology will be presented and a comparison with alternative technology will be done.