The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-...The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.展开更多
This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in...This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.展开更多
A real-time auto-focusing system with auto-collimation method is introduced, which is used in auto-detecting the focus of the space camera with long focus. Auto-focusing is the key technique to ensure high quality in ...A real-time auto-focusing system with auto-collimation method is introduced, which is used in auto-detecting the focus of the space camera with long focus. Auto-focusing is the key technique to ensure high quality in space imaging. It can measure and compensate the defocus caused by the change of temperature and air pressure etc. in space. To solve the problem of auto-focusing with auto-collimation method of the camera whose axis is perpendicular to the ground, it is designed that two small caliber pentagonal prisms are placed in the area of aperture suitable to the camera’s relative aperture based on the theory of auto-focusing with auto-collimation, which can replace the big caliber plane reflector used in other cameras. Using the characteristic of pentagonal prism refracting light vertically, the target slit is imaged in CCD through the two-separated lens. It transforms the detecting of the axial defocusing quantity to the landscape orientation measurement of the faculae’s position in the direction of CCD pixels. The defocusing quantity is obtained by measuring the opposite position of the two faculae on the CCD. The Centroid method is adopted to measure the position of the auto-collimation faculae. The arithmetic error is analyzed especially, and the causation is given. Experiments show that this real-time auto-focusing system using centroid method is reliable and the focusing precision can reach ±0.01 mm.展开更多
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet...Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.展开更多
基金Project supported by the National Key Project, China (Grant No. GJXM92579).
文摘The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.
文摘This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.
文摘A real-time auto-focusing system with auto-collimation method is introduced, which is used in auto-detecting the focus of the space camera with long focus. Auto-focusing is the key technique to ensure high quality in space imaging. It can measure and compensate the defocus caused by the change of temperature and air pressure etc. in space. To solve the problem of auto-focusing with auto-collimation method of the camera whose axis is perpendicular to the ground, it is designed that two small caliber pentagonal prisms are placed in the area of aperture suitable to the camera’s relative aperture based on the theory of auto-focusing with auto-collimation, which can replace the big caliber plane reflector used in other cameras. Using the characteristic of pentagonal prism refracting light vertically, the target slit is imaged in CCD through the two-separated lens. It transforms the detecting of the axial defocusing quantity to the landscape orientation measurement of the faculae’s position in the direction of CCD pixels. The defocusing quantity is obtained by measuring the opposite position of the two faculae on the CCD. The Centroid method is adopted to measure the position of the auto-collimation faculae. The arithmetic error is analyzed especially, and the causation is given. Experiments show that this real-time auto-focusing system using centroid method is reliable and the focusing precision can reach ±0.01 mm.
基金financially supported by the National Basic Research Program of China (No. 2013CBA01803)the National Natural Science Foundation of China (No. 41101065)and the CAS "Equipment Development Project for Scientific Research" (No. YZ201523)
文摘Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.