Traditional method to prevent stored grain from deterioration is to control grain temperature.A three dimensional(3-D)numerical model was established to study the temperature variation in outdoor squat silo and large ...Traditional method to prevent stored grain from deterioration is to control grain temperature.A three dimensional(3-D)numerical model was established to study the temperature variation in outdoor squat silo and large size horizontal warehouse at quasi-steady-state.In this research,porous media model and solar radiation model were adopted.Numerical and experimental results showed that grain temperature was influenced by temperature of wall,height of grain and the distance between grain and the wall.Temperature changes dramatically at the top layer of grain heap due to solar radiation and heat convection at air layer.Temperature of grain close to wall increased with the increasing of ambient temperature.The model established in this research is suitable for predicting grain temperature in outdoor squat silo and large size horizontal warehouse.展开更多
Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dyn...Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.展开更多
基金National Natural Science Foundation of China(31271972)University Science and Technology Innovation Team Support Plan of Henan Province,China in 2016(16IRTSTHN009).
文摘Traditional method to prevent stored grain from deterioration is to control grain temperature.A three dimensional(3-D)numerical model was established to study the temperature variation in outdoor squat silo and large size horizontal warehouse at quasi-steady-state.In this research,porous media model and solar radiation model were adopted.Numerical and experimental results showed that grain temperature was influenced by temperature of wall,height of grain and the distance between grain and the wall.Temperature changes dramatically at the top layer of grain heap due to solar radiation and heat convection at air layer.Temperature of grain close to wall increased with the increasing of ambient temperature.The model established in this research is suitable for predicting grain temperature in outdoor squat silo and large size horizontal warehouse.
基金supported by the lab-directed research&develop-ment(LDRD)program of Argonne National Laboratory and U.S.DOE Advanced Grid Modeling Program grant DE-OE0000875.
文摘Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.