期刊文献+
共找到622篇文章
< 1 2 32 >
每页显示 20 50 100
Linearized waveform inversion for vertical transversely isotropic elastic media:Methodology and multi-parameter crosstalk analysis
1
作者 Ke Chen Lu Liu +5 位作者 Li-Nan Xu Fei Hu Yuan Yang Jia-Hui Zuo Le-Le Zhang Yang Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期252-271,共20页
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit... Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs. 展开更多
关键词 Elastic ANISOTROPY Least-squares imaging waveform inversion Computational geophysics
下载PDF
Simultaneous Waveform Inverse Modelling for Litho-Fluid Prediction in an Old Marginal, “Agbbo”Field, Onshore Niger Delta, Nigeria
2
作者 Charles Chibueze Ugbor Peter Ogobi Odong Chukwuemeka Austine Okonkwo 《Journal of Geoscience and Environment Protection》 2024年第5期40-59,共20页
Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with un... Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field. 展开更多
关键词 Simultaneous waveform inversion Lithofacies Fluid Type Rock Physics HYDROCARBON Acoustic Impedance Mu-Rho Reservoir
下载PDF
Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
3
作者 李玉冰 王建 +3 位作者 苏畅 林伟军 王秀明 骆毅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期362-372,共11页
High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In additi... High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In addition,it is particularly important for building digital human acoustic models,which form a reference for future ultrasound research.Conventional ultrasound modalities can hardly image the human brain at high spatial resolution inside the skull due to the strong impedance contrast between hard tissue and soft tissue.We carry out numerical experiments to demonstrate that the time-domain waveform inversion technique,originating from the geophysics community,is promising to deliver quantitative images of human brains within the skull at a sub-millimeter level by using ultra-sound signals.The successful implementation of such an approach to brain imaging requires the following items:signals of sub-megahertz frequencies transmitting across the inside of skull,an accurate numerical wave equation solver simulating the wave propagation,and well-designed inversion schemes to reconstruct the physical parameters of targeted model based on the optimization theory.Here we propose an innovative modality of multiscale deconvolutional waveform inversion that improves ultrasound imaging resolution,by evaluating the similarity between synthetic data and observed data through using limited length Wiener filter.We implement the proposed approach to iteratively update the parametric models of the human brain.The quantitative imaging method paves the way for building the accurate acoustic brain model to diagnose associated diseases,in a potentially more portable,more dynamic and safer way than magnetic resonance imaging and x-ray computed tomography. 展开更多
关键词 ultrasound brain imaging full waveform inversion high resolution digital body
下载PDF
A Rayleigh Wave Globally Optimal Full Waveform Inversion Framework Based on GPU Parallel Computing
4
作者 Zhao Le Wei Zhang +3 位作者 Xin Rong Yiming Wang Wentao Jin Zhengxuan Cao 《Journal of Geoscience and Environment Protection》 2023年第3期327-338,共12页
Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limi... Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. . 展开更多
关键词 Full waveform inversion Finite-Difference Method Globally Optimal Framework GPU Parallel Computing Particle Swarm Optimization
下载PDF
Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion 被引量:22
5
作者 曹小林 朱介寿 +2 位作者 赵连锋 曹家敏 洪学海 《地震学报》 CSCD 北大核心 2001年第2期113-124,共12页
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I... We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions. 展开更多
关键词 面波波形 分块波形反演 三维S波速度结构 中国数字地震台网 “检验板”法 岩石圈
下载PDF
Inversion of ocean-bottom seismometer(OBS) waveforms for oceanic crust structure: a synthetic study 被引量:2
6
作者 Xueyan Li Yanbin Wang Yongshun John Chen 《Earthquake Science》 CSCD 2016年第4期203-213,共11页
The waveform inversion method is applied-- using synthetic ocean-bottom seismometer (OBS) data--to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickn... The waveform inversion method is applied-- using synthetic ocean-bottom seismometer (OBS) data--to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribu- tion of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complex- ity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situa- tions; further studies are required to investigate this issue. 展开更多
关键词 waveform inversion OBS Oceanic crustalstructure Niching genetic algorithm
下载PDF
Time-Domain Full Waveform Inversion Using the Gradient Preconditioning Based on Transmitted Wave Energy 被引量:1
7
作者 SONG Peng TAN Jun +6 位作者 LIU Zhaolun ZHANG Xiaobo LIU Baohua YU Kaiben LI Jinshan XIA Dongming XIE Chuang 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第4期859-867,共9页
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge memory consumption of the gradient preconditioning algorithms based on the Hessian matrix. However, the accuracy of thi... The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge memory consumption of the gradient preconditioning algorithms based on the Hessian matrix. However, the accuracy of this approach is prone to be influ- enced by the energy of reflected waves. To tackle this problem, the paper proposes a new gradient preconditioning method based on the energy of transmitted waves. The approach scales the gradient through a precondition factor, which is calculated by the ‘ap- proximate transmission wavefield’ simulation based on the nonreflecting acoustic wave equation. The method requires no computing nor storing of the Hessian matrix and its inverse matrix. Furthermore, the proposed method can effectively eliminate the effects of geometric spreading and disproportionality in the gradient illumination. The results of model experiments show that the time-domain full waveform inversion (FWI) using the gradient preconditioning based on transmitted wave energy can achieve higher inversion accuracy for deep high-velocity bodies and their underlying strata in comparison with the one using the gradient preconditioning based on seismic wave energy. The field marine seismic data test shows that our proposed method is also highly applicable to the FWI of field marine seismic data. 展开更多
关键词 full waveform inversion GRADIENT PRECONDITIONING transmitted WAVE nonreflecting acoustic WAVE equation
下载PDF
Genetic algorithm in seismic waveform inversion and its application in deep seismic sounding data interpretation 被引量:1
8
作者 王夫运 张先康 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第2期163-172,共10页
A genetic algorithm of body waveform inversion is presented for better understanding of crustal and upper mantle structures with deep seismic sounding (DSS) waveform data. General reflection and transmission synthet... A genetic algorithm of body waveform inversion is presented for better understanding of crustal and upper mantle structures with deep seismic sounding (DSS) waveform data. General reflection and transmission synthetic seismogram algorithm, which is capable of calculating the response of thin alternating high and low velocity layers, is applied as a solution for forward modeling, and the genetic algorithm is used to find the optimal solution of the inverse problem. Numerical tests suggest that the method has the capability of resolving low-velocity layers, thin alternating high and low velocity layers, and noise suppression. Waveform inversion using P-wave records from Zeku, Xiahe and Lintao shots in the seismic wide-angle reflection/refraction survey along northeastern Qinghai-Xizang (Tibeteau) Plateau has revealed fine structures of the bottom of the upper crust and alternating layers in the middle/lower crust and topmost upper mantle. 展开更多
关键词 genetic algorithm waveform inversion numerical test deep seismic sounding fine crustal structure
下载PDF
Reflection-based traveltime and waveform inversion with second-order optimization 被引量:1
9
作者 Teng-Fei Wang Jiu-Bing Cheng Jian-Hua Geng 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1582-1591,共10页
Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep t... Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion(RTI) and reflection waveform inversion(RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets. 展开更多
关键词 Reflection waveform inversion Reflection traveltime inversion Gauss-Newton HESSIAN
下载PDF
Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm 被引量:3
10
作者 Yanyang Chen Yanbin Wang Yuansheng Zhang 《Earthquake Science》 CSCD 2017年第2期81-89,共9页
The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model... The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively. 展开更多
关键词 Seismic waveform inversion Crustal velocity structure Central Gansu Province Firework algorithm
下载PDF
Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain 被引量:1
11
作者 Wensheng Zhang Atish Kumar Joardar 《Journal of Applied Mathematics and Physics》 2018年第5期1086-1110,共25页
We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the c... We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the constrained optimization together which can inverse the slowness effectively. One advantage of slowness inversion is that there is no further approximation in the gradient derivation. Moreover, a new algorithm named the skip method for solving the constrained optimization problem is proposed. The TV regularization has good ability to inverse slowness at its discontinuities while the constrained optimization can keep the inversion converging in the right direction. Numerical computations both for noise free data and noisy data show the robustness and effectiveness of our method and good inversion results are yielded. 展开更多
关键词 ACOUSTIC Wave Equation CROSSHOLE Full waveform inversion SLOWNESS BOUND Constraints TV Regularization
下载PDF
ultiscale full-waveform inversion based on shot subsampling 被引量:1
12
作者 Shi Cai-Wang He Bing-Shou 《Applied Geophysics》 SCIE CSCD 2018年第2期261-270,363,共11页
常规全波形反演利用全部炮集参与计算,反演的计算量巨大。针对这一问题,本文分析了不同频率反演对炮数的需求,进而提出一种基于频率多尺度反演方法的加速策略。该方法利用反演所需炮数与频率正相关的特性,在反演低频数据时,每次迭代只... 常规全波形反演利用全部炮集参与计算,反演的计算量巨大。针对这一问题,本文分析了不同频率反演对炮数的需求,进而提出一种基于频率多尺度反演方法的加速策略。该方法利用反演所需炮数与频率正相关的特性,在反演低频数据时,每次迭代只抽取一部分炮集参与反演,频率升高时,相应地引入更多的炮集参与运算,两次迭代之间通过组内随机炮采样的方法实现炮集的轮换,避免炮集信息的丢失。该方法通过降低反演炮数从而减少计算量,由于不涉及炮集的串扰,因此不会引入额外的噪声,也不受限于观测系统。模型测试结果表明,该方法在炮集数量较多时可以明显减少计算时间,同时,该方法具有一定的抗噪能力,对含噪声的地震记录也能得到较好的反演结果。 展开更多
关键词 波形 反演 频率 炮采样
下载PDF
Q full-waveform inversion based on the viscoacoustic equation 被引量:1
13
作者 Wang En-Jiang Liu Yang +2 位作者 Ji Yu-Xin Chen Tian-Sheng Liu Tao 《Applied Geophysics》 SCIE CSCD 2019年第1期77-91,共15页
Presently, most full-waveform inversion methods are developed for elastic media and ignore the effect of attenuation. The calculation of the quality factor Q is based on velocity parameter inversion under the assumpti... Presently, most full-waveform inversion methods are developed for elastic media and ignore the effect of attenuation. The calculation of the quality factor Q is based on velocity parameter inversion under the assumption of a given Q-model that is obtained by tomographic inversion. However, the resolution of the latter is low and cannot reflect the amplitude attenuation and phase distortion during wave propagation in viscoelastic media. Thus, a Q waveform inversion method is proposed. First, we use standard linear body theory to describe attenuation and then we derive the simplified viscoacoustic equation that characterizes amplitude attenuation and phase distortion. In comparison with conventional equations, the simplifi ed equation involves no memory variables and therefore requires less memory during computation. Moreover, the implementations of the attenuation compensation are easier. The adjoint equation and the corresponding gradient equation with respect to either L2-norm or the zero-lag cross-correlation objective function are then derived and the regularization strategy for overcoming the instability during numerical solution of the adjoint equation is proposed. The Q waveform inversion is developed using the limited-memory Broyden–Fletcher– Goldfarb–Shanno (L-BFGS) iteration method for known velocity. To alleviate the dependence of the waveform inversion on the initial model and overcome cycle skipping to some extent, we adopt multiscale analysis. Furthermore, anti-noise property and double-parameter inversion are assessed based on the results of numerical modeling. 展开更多
关键词 QUALITY FACTOR Q full-waveform inversion ATTENUATION stability
下载PDF
Parallel Algorithm in Surface Wave Waveform Inversion
14
作者 Cao Xiao lin, Song Jun qiang School of Computer Science, National University of Defense Technology, Changsha 410073, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期574-578,共5页
In Surface wave waveform inversion, we want to reconstruct 3D shear wave velocity structure, which calculation beyond the capability of the powerful present day personal computer or even workstation. So we designed a ... In Surface wave waveform inversion, we want to reconstruct 3D shear wave velocity structure, which calculation beyond the capability of the powerful present day personal computer or even workstation. So we designed a high paralleled algorithm and carried out the inversion on Parallel computer based on the partitioned waveform inversion (PWI). It partitions the large scale optimization problem into a number of independent small scale problems and reduces the computational effort by several orders of magnitude. We adopted surface waveform inversion with a equal block(2 o×2 o) discretization. 展开更多
关键词 surface wave waveform inversion parallel algorithm partitioned waveform inversion
下载PDF
Visco-acoustic transmission waveform inversion of velocity structure in space-frequency domain
15
作者 Guihua Long Xiaofan Li +1 位作者 Meigen Zhang Tong Zhu 《Earthquake Science》 CSCD 2009年第1期45-52,共8页
According to the least square criterion of minimizing the misfit between modeled and observed data, this paper provides a preconditioned gradient method to invert the visco-acoustic velocity structure on the basis of ... According to the least square criterion of minimizing the misfit between modeled and observed data, this paper provides a preconditioned gradient method to invert the visco-acoustic velocity structure on the basis of using sparse matrix LU factorization technique to directly solve the visco-acoustic wave forward problem in space-frequency domain. Numerical results obtained in an inclusion model inversion and a layered homogeneous model inversion demonstrate that different scale media have their own frequency responses, and the strategy of using low-frequency inverted result as the starting model in the high-frequency inversion can greatly reduce the non-tmiqueness of their solutions. It can also be observed in the experiments that the fast convergence of the algorithm can be achieved by using diagonal elements of Hessian matrix as the preconditioned operator, which fully incorporates the advantage of quadratic convergence of Gauss-Newton method. 展开更多
关键词 visco-acoustic waveform inversion LU factorization preconditioned operator
下载PDF
CRUST AND UPPER STRUCTURE OF QINGHAI-TIBET PLATEAU AND ITS ADJACENT REGIONS FROM SURFACE WAVEFORM INVERSION
16
作者 Cao Xiaolin,Cao Jamin,Zhu Jieshou 《地学前缘》 EI CAS CSCD 2000年第S1期316-316,共1页
In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 40... In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it. 展开更多
关键词 Qinghai—Tibet plateau long period Rayleigh wave partitioned waveform inversion 3\|D model of shear VELOCITY lower VELOCITY layer LITHOSPHERE STRUCTURE
下载PDF
Full-waveform Velocity Inversion Based on the Acoustic Wave Equation 被引量:2
17
作者 Wensheng Zhang Jia Luo 《American Journal of Computational Mathematics》 2013年第3期13-20,共8页
Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data... Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data obtained by a numerical solution of the wave equation. Two inversion algorithms in combination with the CG method and the BFGS method are described respectively. Numerical computations for two models including the benchmark Marmousi model with complex structure are implemented. The inversion results show that the BFGS-based algorithm behaves better in inversion than the CG-based algorithm does. Moreover, the good inversion result for Marmousi model with the BFGS-based algorithm suggests the quasi-Newton methods can provide an important tool for large-scale velocity inversion. More computations demonstrate the correctness and effectives of our inversion algorithms and code. 展开更多
关键词 FINITE DIFFERENCE Acoustic Wave Equation Full-waveform inversion CG METHOD BFGS METHOD Marmousi Model
下载PDF
Full waveform inversion based on initial model built from envelope inversion
18
作者 YIN Chang SUN Jianguo +1 位作者 MIAO He YAN Hongqun 《Global Geology》 2018年第1期62-67,共6页
Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. Howe... Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. However,there are many problems to be solved in practical application. Firstly,it is the strong nonlinear problem between the seismic wave field and inversion parameters; secondly,the lack of low-frequency information in seismic records. In this study,the envelope is used as objective function inversion to provide the inversion result for the multi-scale full waveform inversion as the initial model,solving the lack of low-frequency information in seismic records. Taking the envelope of seismic records as the objective function in combination of multi-scale full waveform inversion became a new inversion strategy,which naturally achieved the compensation of shortage of low-frequency information and inversion from low frequency to high frequency,reducing the non-linearity in the inversion process. The comparison of the result of full waveform inversion of the initial model built through envelope inversion with the result of the conventional multi-scale full waveform inversion indicates the effectiveness of envelope inversion for the recovery of low-frequency information in seismic records. 展开更多
关键词 MULTI-SCALE full waveform inversion ENVELOPE inversion objective function LOW-FREQUENCY information
下载PDF
Wavelet packet envelope multi-scale full waveform inversion
19
作者 ZHANG Tianze HAN Liguo 《Global Geology》 2018年第1期68-76,共9页
Full waveform inversion( FWI) is an effective tool for constructing high resolution velocity models,but it is affected by a local minima problem. Without long offsets and low frequency data,it is difficult to apply th... Full waveform inversion( FWI) is an effective tool for constructing high resolution velocity models,but it is affected by a local minima problem. Without long offsets and low frequency data,it is difficult to apply the conventional multi-scale FWI to actual seismic data. In this study,the large offset and low frequency information are provided by the method of wavelet packet envelope for the conventional FWI. The gradient can be computed efficiently with the adjoint state method without any additional computational cost. Marmousi synthetic data is used to illustrate that,compared with Hilbert envelope-based FWI,wavelet packet envelope FWI can provide an adequately accurate model for the conventional FWI approach even when the initial model is far from the true model and the low-frequency data are missing. 展开更多
关键词 full waveform inversion wavelet PACKET ENVELOPE local MINIMA cycle SKIPPING
下载PDF
Time Domain Full Waveform Inversion Based on Gradient Preconditioning with an Angle-Dependent Weighting Factor
20
作者 XIA Dongming SONG Peng +6 位作者 LI Xishuang TAN Jun XIE Chuang WANG Shaowen LIU Kai ZHAO Bo MAO Shibo 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1479-1486,共8页
There are lots of low wavenumber noises in the gradients of time domain full waveform inversion(FWI),which can seriously reduce the accuracy and convergence speed of FWI.Thus,we introduce an angle-dependent weighting ... There are lots of low wavenumber noises in the gradients of time domain full waveform inversion(FWI),which can seriously reduce the accuracy and convergence speed of FWI.Thus,we introduce an angle-dependent weighting factor to precondition the gradients so as to suppress the low wavenumber noises when the multi-scale FWI is implemented in the high frequency.Model experiments show that the FWI based on the gradient preconditioning with an angle-dependent weighting factor has faster convergence speed and higher inversion accuracy than the conventional FWI.The tests on real marine seismic data show that this method can adapt to the FWI of field data,and provide high-precision velocity models for the actual data processing. 展开更多
关键词 full waveform inversion low wavenumber noise angle-dependent weighting factor
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部