This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC conver...This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range,especially at high switching frequency,the dead time controller and width controller are applied to enhance the high load efficiency,while the DCM controller and FSM controller are proposed to increase the light load efficiency.The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35μm CMOS process,and the measured results show that the efficiency of the buck DC-DC converter is above 80%over a wide load current range from 8 to 570 mA,and the peak efficiency is 86%at 10 MHz switching frequency.展开更多
文摘单电感双输出(single-inductor dual-output,SIDO)开关变换器工作在共享充放时序下存在电感电流纹波大、输出支路间交叉影响严重以及电路参数宽范围变化下控制电路不能正常工作等问题.为此,提出一种独立充放时序电流型变频控制(current-mode variable frequency control,C-VF)技术.首先,具体描述变换器在连续导电模式(continuous conduction mode,CCM)下的工作原理,并推导主电路开环传递函数;进一步构建闭环小信号模型,推导闭环交叉阻抗,详细分析不同输出电压及负载电流下变换器的交叉影响特性;最后,通过仿真和实验进行验证.研究表明:相较于共享充放时序,独立充放时序C-VF CCM SIDO buck变换器减小了交叉影响,改善了负载瞬态响应性能;当两支路负载电压不等时,减轻某一支路负载可以降低该支路的交叉影响;当两支路输出电压相同但负载不同时,重载支路对轻载支路的交叉影响更小.
基金Project supported by the National Natural Science Foundation of China(No.60676013).
文摘This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range,especially at high switching frequency,the dead time controller and width controller are applied to enhance the high load efficiency,while the DCM controller and FSM controller are proposed to increase the light load efficiency.The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35μm CMOS process,and the measured results show that the efficiency of the buck DC-DC converter is above 80%over a wide load current range from 8 to 570 mA,and the peak efficiency is 86%at 10 MHz switching frequency.