A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and...A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.展开更多
This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets appli...This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets applied for the construction of circulant matrices are determined by a particular subset.Considering the nonexistence of cycles four and six in the structure of the parity check matrix,a bound for their minimum weight is proposed.The simtdations conducted confirm that without applying a masking technique,the newly implemented codes have a performance similar to or better than other well-known codes.This is evident in the waterfall region, while their error floor at very low Bit Error Rate (BER)is expected.展开更多
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some ne...In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.展开更多
Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct s...Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.展开更多
The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of length...The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.展开更多
Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences o...Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.展开更多
基金Supported by the National Key Basic Research Program (973) Project (No. 2010CB328300)the 111 Project (No. B08038)
文摘A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.
文摘This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets applied for the construction of circulant matrices are determined by a particular subset.Considering the nonexistence of cycles four and six in the structure of the parity check matrix,a bound for their minimum weight is proposed.The simtdations conducted confirm that without applying a masking technique,the newly implemented codes have a performance similar to or better than other well-known codes.This is evident in the waterfall region, while their error floor at very low Bit Error Rate (BER)is expected.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60773085 and 60801051)the NSFC-KOSEF International Collaborative Research Funds (Grant Nos 60811140346 and F01-2008-000-10021-0)
文摘In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.
基金the National Natural Science Foundation of China (60603016)
文摘Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61372074 and 91438101)the National High Technology Research and Development Program of China(Grant No.2015AA01A709)
文摘The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.
文摘Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.