目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法...目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法:从美国重症监护医学信息数据库IV(Medical Information Mart for Intensive Care-IV,MIMIC-IV)中选取符合脓毒症3.0诊断标准的人群,按7?3的比例随机分为建模组和验证组,分析患者的基线资料。采用单因素Cox回归分析和全子集回归确定脓毒症患者死亡的危险因素并筛选出构建预测模型的变量。分别用时间依赖性曲线下面积(area under the curve,AUC)、校准曲线和决策曲线评估模型的区分度、校准度和临床实用性。结果:共纳入14240例脓毒症患者,28 d和1年病死率分别为21.45%(3054例)和36.50%(5198例)。高龄、女性、高感染相关器官衰竭评分(sepsis-related organ failure assessment,SOFA)、高简明急性生理学评分(simplified acute physiology score II,SAPS II)、心率快、呼吸频率快、脓毒症休克、充血性心力衰竭、慢性阻塞性肺疾病、肝脏疾病、肾脏疾病、糖尿病、恶性肿瘤、高白细胞计数(white blood cell count,WBC)、长凝血酶原时间(prothrombin time,PT)、高血肌酐(serum creatinine,SCr)水平均为脓毒症死亡的危险因素(均P<0.05)。由PT、呼吸频率、体温、合并恶性肿瘤、合并肝脏疾病、脓毒症休克、SAPS II及年龄8个变量构建的模型,其28 d和1年生存的AUC分别为0.717(95%CI 0.710~0.724)和0.716(95%CI 0.707~0.725)。校准曲线和决策曲线表明该模型具有良好的校准度及较好的临床应用价值。结论:基于MIMIC-IV建立的脓毒症患者近期和远期死亡风险预测模型有较好的识别能力,对患者预后风险评估及干预治疗具有一定的临床参考意义。展开更多
文摘目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法:从美国重症监护医学信息数据库IV(Medical Information Mart for Intensive Care-IV,MIMIC-IV)中选取符合脓毒症3.0诊断标准的人群,按7?3的比例随机分为建模组和验证组,分析患者的基线资料。采用单因素Cox回归分析和全子集回归确定脓毒症患者死亡的危险因素并筛选出构建预测模型的变量。分别用时间依赖性曲线下面积(area under the curve,AUC)、校准曲线和决策曲线评估模型的区分度、校准度和临床实用性。结果:共纳入14240例脓毒症患者,28 d和1年病死率分别为21.45%(3054例)和36.50%(5198例)。高龄、女性、高感染相关器官衰竭评分(sepsis-related organ failure assessment,SOFA)、高简明急性生理学评分(simplified acute physiology score II,SAPS II)、心率快、呼吸频率快、脓毒症休克、充血性心力衰竭、慢性阻塞性肺疾病、肝脏疾病、肾脏疾病、糖尿病、恶性肿瘤、高白细胞计数(white blood cell count,WBC)、长凝血酶原时间(prothrombin time,PT)、高血肌酐(serum creatinine,SCr)水平均为脓毒症死亡的危险因素(均P<0.05)。由PT、呼吸频率、体温、合并恶性肿瘤、合并肝脏疾病、脓毒症休克、SAPS II及年龄8个变量构建的模型,其28 d和1年生存的AUC分别为0.717(95%CI 0.710~0.724)和0.716(95%CI 0.707~0.725)。校准曲线和决策曲线表明该模型具有良好的校准度及较好的临床应用价值。结论:基于MIMIC-IV建立的脓毒症患者近期和远期死亡风险预测模型有较好的识别能力,对患者预后风险评估及干预治疗具有一定的临床参考意义。