期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
QUANTUM COMPLEXITY OF THE APPROXIMATION FOR THE CLASSES B(W_p^r([0,1]~d)) AND B(H_p^r([0,1]~d))
1
作者 叶培新 胡晓菲 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1808-1818,共11页
We study the approximation of functions from anisotropic Sobolev classes b(WpR([0, 1]d)) and HSlder-Nikolskii classes B(HPr([0, 1]d)) in the Lq ([0, 1]d) norm with q 〈 p in the quantum model of computation.... We study the approximation of functions from anisotropic Sobolev classes b(WpR([0, 1]d)) and HSlder-Nikolskii classes B(HPr([0, 1]d)) in the Lq ([0, 1]d) norm with q 〈 p in the quantum model of computation. We determine the quantum query complexity of this problem up to logarithmic factors. It shows that the quantum algorithms are significantly better than the classical deterministic or randomized algorithms. 展开更多
关键词 quantum approximation anisotropic classes minimal query error
下载PDF
Optimal query error of quantum approximation on some Sobolev classes 被引量:2
2
作者 SONG ZhanJie YE PeiXin 《Science China Mathematics》 SCIE 2008年第9期1664-1678,共15页
We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation... We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from L p N to L q N , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(W p r ([0, 1] d )) to L q ([0, 1] d ) space for all 1 ? q,p ? ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings. 展开更多
关键词 quantum approximation Sobolev classes n-th minimal query error 41A63 65D15
原文传递
Lower Bound for Quantum Integration Error on Anisotropic Sobolev Classes
3
作者 Pei Xin YE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第4期669-678,共10页
We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobole... We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms. 展开更多
关键词 quantum integration anisotropic Sobolev classes Holder-Nikolskii classes n-th minimal query error
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部