期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli 被引量:2
1
作者 Xianxuan Zhou Xiaoming Meng Baolin Sun 《Cell Research》 SCIE CAS CSCD 2008年第9期937-948,共12页
Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, includi... Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-depen- dent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli. 展开更多
关键词 quorum sensing ydi V CAMP
下载PDF
The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry
2
作者 Ying Zhang Qingping Wu +6 位作者 Stephen Forsythe Chengcheng Liu Nuo Chen Yangfu Li Jumei Zhang Juan Wang Yu Ding 《Food Bioscience》 SCIE 2023年第2期117-125,共9页
Biofilms containing foodborne pathogens can adhere to food ingredients or food processing equipment.Due to their enhanced resilience to cleaning and chance of cross-contamination,there is an increased risk of food poi... Biofilms containing foodborne pathogens can adhere to food ingredients or food processing equipment.Due to their enhanced resilience to cleaning and chance of cross-contamination,there is an increased risk of food poisoning to consumers.The life course of biofilms is generally thought to be regulated by a quorum sensing(QS)system by secreted autoinducing peptides(AIPs).Recent studies have revealed that small non-coding RNA(sRNA)also plays an important role in regulating biofilm formation at the post-transcriptional level.Moreover,sRNA can act as an intermediate regulating hub between the quorum sensing system and biofilm.This review summarizes the latest findings on sRNA in biofilms of common foodborne pathogens and their potential impact.We also highlight the different mechanism of cascade regulation of sRNA and QS system in biofilm formation in several typical foodborne pathogens.In this process,sRNA responds to dynamic external environmental signals finely and accurately,and can feedback information on the bacterial cell environment to modify the QS system.These findings will deepen our understanding of biofilm formation and provide new perspectives for eliminating biofilm of foodborne pathogens based on the cascade regulation of small RNA and QS for developing biofilm-free food-processing systems. 展开更多
关键词 Foodborne pathogens Biofilm Small non-coding RNA quorum sensing Two-component system Stress response
原文传递
Inhibition of citral nanoemulsion to growth,spoilage ability and Al-2/luxS quorum sensing system of Shewanella putrefaciens CN-32:a study on bacteriostasis from in vitro culture and gene expression analysis
3
作者 Zhiheng Hu Yaoxian Chin +5 位作者 Jiayin Huang Jiaying Zhou Gaoshang Li Yaqin Hu Chunhong Yuan Jianchu Chen 《Food Quality and Safety》 SCIE CSCD 2022年第3期435-445,共11页
Objectives:The bacteriostatic effects of a citral nanoemulsion against Shewanella putrefaciens CN-32(SHP CN-32)were investigated using in vitro culture and gene expression analysis,forbuilding a potential application ... Objectives:The bacteriostatic effects of a citral nanoemulsion against Shewanella putrefaciens CN-32(SHP CN-32)were investigated using in vitro culture and gene expression analysis,forbuilding a potential application in spoilage microorganism control and aquatic products quality maintenance.Materials and Methods:SHP CN-32 was treated by prepared citral nanoemulsion when the minimal inhibitory concentration(MIC)was verified.The growth curve,membrane integrity,scanning electron microscope(SEM)observation,biofilm formation and quorum sensing(QS)signaling molecule Al-2 content were evaluated in different MIC treatment groups(0 to 1.00 MIC).The gene expression status of SHP CN-32 in O and 0.50 MIC groups were compared using transcriptome sequencing and quantitative polymerase chain reaction(PCR).Results:The in vitro culture revealed that the citral nanoemulsion could inhibit the growth of SHP CN-32 with MIC of approximately 200μg/mL.Images of membrane integrity.SEM and biofilm formation suggested significant biological structure damage in bacteria after treatment.Meanwhile,the Qs signaling molecule Al-2 content showed a decline with increasing treatment concentration.Transcriptome sequencing and quantitative PCR revealed that the majority genes related diversified functional metabolic pathways of SHP CN-32 were downregulated at varying degree.Conclusion:A significant bacteriostasis of citral nanoemulsion against SHP CN-32 was verified via the results of growth inhibition,structural destruction,signal molecular decrease and gene expression downregulation of strains.These synergies significantly affect the characteristic expression of SHP CN-32,revealing the application potential as bacteriostat,QS inhibitor and preservative in aquatic products. 展开更多
关键词 Shewanella putrefaciens CITRAL quorum sensing system gene expression analysis
原文传递
Quorum sensing systems regulate heterotrophic nitrification-aerobic denitrification by changing the activity of nitrogen-cycling enzymes 被引量:8
4
作者 Ziqian Zhu Yang Yang +4 位作者 Anran Fang Yu Lou Guojun Xie Nanqi Ren Defeng Xing 《Environmental Science and Ecotechnology》 2020年第2期40-47,共8页
Heterotrophic nitrification-aerobic denitrification(HNAD)is essential in diverse nitrogen-transforming processes.How HNAD is modulated by quorum sensing(QS)systems is still ambiguous.The QS system in Pseudomonas aerug... Heterotrophic nitrification-aerobic denitrification(HNAD)is essential in diverse nitrogen-transforming processes.How HNAD is modulated by quorum sensing(QS)systems is still ambiguous.The QS system in Pseudomonas aeruginosa manipulates colony behavior.Here,we described the influence of the Pseudomonas quinolone signal(PQS)and N-acyl-L-homoserine lactone(AHL)on HNAD.The HNAD of P.aeruginosa was inhibited by the oversecretion of PQS.AHL-or PQS-deficient P.aeruginosa mutants had a higher ability for nitrogen removal.QS inhibited heterotrophic nitrification mainly via controlling the activity of nitrite oxidoreductase(NXR)and the depressed aerobic denitrification by regulating the catalytic abilities of nitric oxide reductase(NOR),nitrite reductase(NIR),and nitrate reductase(NAR).The addition of citrate as the sole carbon source increased the nitrogen removal efficiency compared with other carbon sources.Nitrite,as the sole nitrogen source,could be used entirely with only the moderate concentration of PQS contained.AHL and PQS controlled both nitrification and denitrification,suggesting that QS plays an important role in nitrogen cycle under aerobic conditions. 展开更多
关键词 Heterotrophic nitrification-aerobic DENITRIFICATION quorum sensing Pseudomonas aeruginosa Nitrogen cycle Wastewater treatment
原文传递
Role of quorum sensing in bacterial infections 被引量:16
5
作者 Israel Castillo-Juárez Toshinari Maeda +5 位作者 Edna Ayerim Mandujano-Tinoco María Tomás Berenice Pérez-Eretza Silvia Julieta García-Contreras Thomas K Wood Rodolfo García-Contreras 《World Journal of Clinical Cases》 SCIE 2015年第7期575-598,共24页
Quorum sensing(QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation,... Quorum sensing(QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. 展开更多
关键词 quorum sensing VIRULENCE INFECTIONS Pseudomonas aeruginosa Staphylococcus aureus Animal models
下载PDF
LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing 被引量:13
6
作者 Ting Xue Liping Zhao +2 位作者 Haipeng Sun Xianxuan Zhou Baolin Sun 《Cell Research》 SCIE CAS CSCD 2009年第11期1258-1268,共11页
In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling mol... In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coil and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho- AI-2 renders LsrR unable to bind to its own promoter in vitro. 展开更多
关键词 quorum sensing LSRR AI-2
下载PDF
Medicinal plant products targeting quorum sensing for combating bacterial infections 被引量:7
7
作者 Abdelhakim Bouyahya Nadia Dakka +2 位作者 Abdeslam Et-Touys Jamal Abrini Youssef Bakri 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2017年第8期795-809,共15页
Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. The bacterial resistance against antibiotics is a serious issue for public health. Today, new therapeuti... Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. The bacterial resistance against antibiotics is a serious issue for public health. Today, new therapeutic targets other than the bacterial wall were deciphered. Quorum sensing or bacterial pheromones are molecules called auto-inducer secreted by bacteria to regulate some functions such as antibiotic resistance and biofilms formation. This therapeutic target is well-studied worldwide, nevertheless the scientific data are not updated and only recent researches started to look into its potential as a target to fight against infectious diseases. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. Therefore, this paper aims to provide a current overview of the quorum sensing system in bacteria by revealing their implication in biofilms formation and the development of antibiotic resistance, and an update on their importance as a potential target for natural substances. 展开更多
关键词 quorum sensing Biofilms Bacterial resistance Natural compounds
下载PDF
Gossip in the gut: Quorum sensing, a new player in the hostmicrobiota interactions 被引量:2
8
作者 Garance Coquant Doriane Aguanno +5 位作者 Sandrine Pham Nathan Grellier Sophie Thenet Véronique Carrière Jean-Pierre Grill Philippe Seksik 《World Journal of Gastroenterology》 SCIE CAS 2021年第42期7247-7270,共24页
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers,a process known as quorum sensing(QS).This is a growi... Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers,a process known as quorum sensing(QS).This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome.This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem.This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem.We will also provide clues on the role of QS molecules that may exert,directly or indirectly through their bacterial gossip,an influence on intestinal epithelial barrier function,intestinal inflammation,and intestinal carcinogenesis.This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player.Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future. 展开更多
关键词 Inflammatory bowel disease quorum sensing Gut microbiota DYSBIOSIS INFLAMMATION Intestinal barrier
下载PDF
Screening strategies for quorum sensing inhibitors in combating bacterial infections 被引量:2
9
作者 Lan Lu Mingxing Li +7 位作者 Guojuan Yi Li Liao Qiang Cheng Jie Zhu Bin Zhang Yingying Wang Yong Chen Ming Zeng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第1期1-14,共14页
Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two deca... Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections. 展开更多
关键词 quorum sensing inhibitor quorum quenching Anti-infective agent Screening strategies
下载PDF
Initial detection of the quorum sensing autoinducer activity in the rumen of goats in vivo and in vitro 被引量:5
10
作者 RAN Tao ZHOU Chuan-she +6 位作者 XU Li-wei GENG Mei-mei TAN Zhi-liang TANG Shao-xun WANG Min HAN Xue-feng KANG Jin-he 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2343-2352,共10页
Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell... Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the presence of lux S. 展开更多
关键词 quorum sensing AHLs AI-2 lux S rumen bacteria goat
下载PDF
Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi 被引量:1
11
作者 SHEN Jian-Wei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第3期465-472,共8页
Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data... Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that smafl RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and mmntenance of homeostasis. According to Michaelis-Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise. 展开更多
关键词 quorum sensing genetic network OSCILLATION small RNA BIFURCATION negative feedback loop
下载PDF
Anti-quorum sensing and anti-biofilm formation activities of plant extracts from South Korea 被引量:1
12
作者 Okhee Choi Dong-Wan Kang +7 位作者 Su Kyung Cho Yeyeong Lee Byeongsam Kang Juyoung Bae Seunghoe Kim Jeong Hoon Lee Seung Eun Lee Jinwoo Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2018年第8期411-417,共7页
Objective: To investigate anti-quorum sensing(anti-QS) and anti-biofilm formation(antiBF) activities of the ethanol extracts of 388 plants. Methods: The anti-QS activity of the plant extracts was evaluated by disc-dif... Objective: To investigate anti-quorum sensing(anti-QS) and anti-biofilm formation(antiBF) activities of the ethanol extracts of 388 plants. Methods: The anti-QS activity of the plant extracts was evaluated by disc-diffusion assays using the bio-reporter strain, Chromobacterium violaceum CV017. Pseudomonas aeruginosa PAO1, Yersinia enterocolitica ATCC 9610, and Agrobacterium tumefaciens C58, which possess QS systems, were used to evaluate the antiBF activity of the plant extracts. Results: Among 388 plant extracts, the Cornus controversa(C. controversa) and Cynanchum wilfordii extracts exhibited the strongest anti-QS activity. The C. controversa extract exhibited anti-BF activity against Pseudomonas aeruginosa, Yersinia enterocolitica and Agrobacterium tumefaciens, whereas the Cynanchum wilfordii extract exhibited no anti-BF activity against Pseudomonas aeruginosa. In addition, the C. controversa extract suppressed soft rot of cabbage. Conclusions: The C. controversa extract inhibits bacterial QS and BF, and is capable of controlling soft rot. Therefore, this extract has potential for the prevention and treatment of bacterial infections and for the development of alternatives to antibiotics. 展开更多
关键词 Plant extracts quorum sensing Biofilm formation Cornus controversa
下载PDF
P_(luxI)mutants with different promoting period and their application for quorum sensing regulated protein expression 被引量:1
13
作者 Zhuoning Cao Zhen Liu +1 位作者 Guilin Zhang Xiangzhao Mao 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1841-1849,共9页
Quorum sensing(QS)system can dynamically control the expression of proteins along with the cell growth.The promoting period of QS system has been little focused on until now.In this study,a self-induced dynamic regula... Quorum sensing(QS)system can dynamically control the expression of proteins along with the cell growth.The promoting period of QS system has been little focused on until now.In this study,a self-induced dynamic regulated expression(SIDRE)system was constructed in Escherichia coli.To enable the system suitable for the expression of enzymes,promoter engineering was used to obtain P_(luxI)mutants.To test the SIDRE system,alginate lyase AL493 and esterase Est7 were used as target protein for expression.The enzyme activity of alginate lyase and esterase reached 96.38%and 106.71%of the control strains containing the T7 promoter.In high-density fermentation,the activity of alginate lyase expressed by the SIDRE system with P_(luxI)(T-38C)as promoter was 4.34-fold of that expressed by the T7 promoter.Therefore,the P_(luxI)mutants with different promoting periods and/or different strengths show great potential in both laboratory and industrial scale for protein expression. 展开更多
关键词 quorum sensing Promoter engineering ENZYMES Alginate lyase ESTERASE High-density fermentation
下载PDF
Quantitative modeling of bacterial quorum sensing dynamics in time and space 被引量:1
14
作者 Xiang Li Hong Qi +5 位作者 Xiao-Cui Zhang Fei Xu Zhi-Yong Yin Shi-Yang Huang Zhao-Shou Wang Jian-Wei Shuai 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期1-8,共8页
Quorum sensing (QS) refers to the cell communication through signaling molecules that regulate many important biological functions of bacteria by monitoring their population density. Although a wide spectrum of studie... Quorum sensing (QS) refers to the cell communication through signaling molecules that regulate many important biological functions of bacteria by monitoring their population density. Although a wide spectrum of studies on the QS system mechanisms have been carried out in experiments, mathematical modeling to explore the QS system has become a powerful approach as well. In this paper, we review the research progress of network modeling in bacterial QS to capture the system's underlying mechanisms. There are four types of QS system models for bacteria: the Gram-negative QS system model, the Gram-positive QS system model, the model for both Gram-negative and Gram-positive QS system, and the synthetic QS system model. These QS system models are mostly described by the ordinary differential equations (ODE) or partial differential equations (PDE) to study the changes of signaling molecule dynamics in time and space and the cell population density variations. Besides the deterministic simulations, the stochastic modeling approaches have also been introduced to discuss the noise effects on kinetics in QS systems. Taken together, these current modeling efforts advance our understanding of the QS system by providing systematic and quantitative dynamics description, which can hardly be obtained in experiments. 展开更多
关键词 hacterial quorum sensing signaling molecules mathematical modeling dynamic analysis
下载PDF
Quorum-Sensing of Bacteria and Its Application 被引量:1
15
作者 JIANG Guoliang SU Mingxia 《Journal of Ocean University of China》 SCIE CAS 2009年第4期385-391,共7页
Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracell... Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing indus- tries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper. 展开更多
关键词 quorum sensing N-acyl homoserine lactones auto inducer quorum quenching
下载PDF
Monooxygenase Gene from Acinetobacter sp. C42 Inactivates the Acyl Homoserine Lactone Quorum Sensing Signal 被引量:1
16
作者 Aili TUREKE 《Agricultural Biotechnology》 CAS 2012年第5期30-33,39,共5页
[ Objective] This study aimed to investigate the function of aliD gene in the inactivation of AHLs. [ Method ] A bacterial isolate, Acinetobacter sp. CA2 from soil, is capable of inactivation of AHLs. A gene designed ... [ Objective] This study aimed to investigate the function of aliD gene in the inactivation of AHLs. [ Method ] A bacterial isolate, Acinetobacter sp. CA2 from soil, is capable of inactivation of AHLs. A gene designed as aliD, which is responsible for AHL-quenching activity and exhibits high similarity with Mo- nooxygenase genes, was cloned from the genomic library of Acinetobacter sp. CA2. [ Result ] The aliD gene in-frame deletion mutant, CA2 AliD, impaired its AHLs inactivating function when mixed with N-(3-oxooctanoyl) -L-homosefine lactone (30C8-HSL). Expression of AliD in plant pathogenic bacterium Pectobacterium ca- rotovorum subsp, carotovorum Z3-3 significantly reduced the AHLs production and the extracellular pectolytic enzyme activities, and attenuated soft rot disease symptoms on the plants tested, including potato, Chinese cabbage, radish and cabbage. [ Conclusion ] Our study suggests that the aliD gene complemented strain CA2-AliD showes a similar AHLs inactivating function. 展开更多
关键词 quorum sensing ACINETOBACTER Qcyl-homoserine lactones MONOOXYGENASE
下载PDF
Biofilm Formation by Marine Cobetia marina alex and Pseudoaltero­monas spp: Development and Detection of Quorum Sensing N-Acyl Homoserine Lactones (AHLs) Molecules 被引量:2
17
作者 Samia S.Abouelkheir Eman A.Abdelghany +1 位作者 Soraya A.Sabry Hanan A.Ghozlan 《Journal of Marine Science》 2021年第3期1-12,共12页
Surfaces submerged in seawater are colonized by various microorganisms,resulting in the formation of heterogenic marine biofilms.This work aims to evaluate the biofilm formation by Cobetia marina alex and doing a comp... Surfaces submerged in seawater are colonized by various microorganisms,resulting in the formation of heterogenic marine biofilms.This work aims to evaluate the biofilm formation by Cobetia marina alex and doing a comparative study between this promising strain with the two bacterial strains isolated previously from the Mediterranean seawater,Alexandria,Egypt.Three strains;Cobetia marina alex,Pseudoalteromonas sp.alex,and Pseudoalteromonas prydzensis alex were screened for biofilm formation using the crystal violet(CV)quantification method in a single culture.The values of biofilm formed were OD600=3.0,2.7,and 2.6,respectively leading to their selection for further evaluation.However,factors affecting biofilm formation by C.marina alex were investigated.Biofilm formation was evaluated in single and multispecies consortia.Synergistic and antagonistic interactions proved in this work lead to the belief that these bacteria have the capability to produce some interesting signal molecules N-acyl Homoserine Lactones(AHLs). 展开更多
关键词 quorum sensing BIOFILM Pseudoalteromonas prydzensis alex Pseudoalteromonas sp.alex Cobetia marina alex Extracellular polymeric substance(EPS)
下载PDF
Potential of polyphenols in curbing quorum sensing and biofilm formation in Gramnegative pathogens
18
作者 Arnica F Lal Shaminder Singh +1 位作者 Francisco C.Franco,Jr. Sonam Bhatia 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2021年第6期231-243,共13页
Polyphenols are the secondary metabolic products of plants and are considered as active constituents to possess therapeutic effects.To date,a vast number of scientific literature addressed the potential of polyphenols... Polyphenols are the secondary metabolic products of plants and are considered as active constituents to possess therapeutic effects.To date,a vast number of scientific literature addressed the potential of polyphenols as bio-efficient compounds owing to their structural diversity.Due to the presence of several hydroxyl groups,they are metabolized quickly due to conjugation reaction and thus,readily produce toxic metabolites as a defense material against many pathogens,reflecting their safety strategy.This review focuses on the anti-quorum sensing and biofilm inhibition activity of polyphenols,which display their potential to treat bacterial infections by combating the virulence caused by pathogenic agents.Thus,for mitigating quorum sensing-controlled pathogenesis,the use of polyphenol-based phytochemicals holds immense potential to cure infections.The application of polyphenol as sensitizing agent/adjuvant therapeutics which act in synergism with antibiotics is highly remarkable. 展开更多
关键词 POLYPHENOLS quorum sensing BIOFILM Recombinant polyphenolic compounds SENSITIZERS Antibiotic resistance
下载PDF
Quality evaluation of synthetic quorum sensing peptides used in R&D
19
作者 Frederick Verbeke Evelien Wynendaele +2 位作者 Sarah Braet Matthias D'Hondt Bart De Spiegeleer 《Journal of Pharmaceutical Analysis》 SCIE CAS 2015年第3期169-181,共13页
Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomed... Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the supplier's certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s) in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC. 展开更多
关键词 quorum sensing peptides QUALITY Impurity profiling
下载PDF
Research Progress of Quorum Sensing in Staphylococcus aureus
20
作者 Zhengshan HONG Yumei HUANG +1 位作者 Ke YANG Chunhui ZENG 《Agricultural Biotechnology》 CAS 2020年第4期72-74,共3页
Quorum sensing refers to the phenomenon that bacteria sense signal molecules in the environment and regulate a series of genes.At present,the known quorum sensing systems in Staphylococcus aureus are the Agr system an... Quorum sensing refers to the phenomenon that bacteria sense signal molecules in the environment and regulate a series of genes.At present,the known quorum sensing systems in Staphylococcus aureus are the Agr system and the LuxS/AI-2 system.They will be activated when the bacterial concentration is equal to or greater than 107/ml,and by regulating the corresponding genes,bacteria can indirectly or directly regulate the production and degradation of biofilms,the secretion of bacterial toxins and the growth of bacteria.In this paper,we summarized the research progress of quorum sensing in S.aureus by consulting relevant literatures at home and abroad on quorum sensing in S.aureus,so as to find a new direction for the future research on S.aureus. 展开更多
关键词 quorum sensing Staphylococcus aureus BIOFILM PATHOGENICITY
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部