对基于R-Tree的空间连接代价模型进行了探讨,主要研究了HUANG Y W提出的空间连接代价模型。利用最优/最差选择策略降低该算法的时间复杂度,对基于缓冲区的代价模型提出了改进后的评估公式,通过实验验证了改进后的模型比原模型提高了评...对基于R-Tree的空间连接代价模型进行了探讨,主要研究了HUANG Y W提出的空间连接代价模型。利用最优/最差选择策略降低该算法的时间复杂度,对基于缓冲区的代价模型提出了改进后的评估公式,通过实验验证了改进后的模型比原模型提高了评估的精确度。展开更多
Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably impr...Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.展开更多
基金Supported by the Major State Basic Research Development Program of China (973 Program) (2010CB428804) the National Science Foundation ot China (40672172) and the Major Science and Technology Program for Water Pollution Control and Treatment(2009ZX07212-003)
文摘Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.